Tracing the Path to YouTube -A Quantification of Path Lengths and Latencies towards Content Caches

Accepted for publication in IEEE Communications Magazine (Pre-print: http://in.tum.de/~doan/2018-yt-traces.pdf)

Trinh Viet Doan, Ljubica Pajević, Vaibhav Bajpai, Jörg Ott

> Chair of Connected Mobility Technical University of Munich

ТШ

RIPE 77, Amsterdam October 17, 2018 Motivation Research Question Methodology Analysis Paths Deltas Destination Pairs Content Caches

ТШП

Introduction

Introduction Motivation Research Questions

Analysi

Paths

Deltas

Destination Pairs

Introduction

Motivation

Previous work [2]:

- Measuring YouTube performance for popular videos
- Performance over IPv6 is worse than over IPv4
- Speculation: Content caches not dual-stacked?

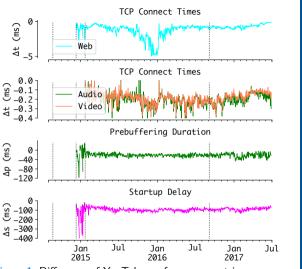


Figure 1: Difference of YouTube performance metrics over IPv4 and IPv6

٦Π

Motivation

Introduction Research Questions

- 1. How far are content caches from users?
- 2. How much benefit do these caches provide?
- 3. How do these metrics compare quantitatively over IPv4 and IPv6?

ТШП

Motivation Research Questions Methodology Analysis Paths Deltas Destination Pairs

ТШП

Introduction Motivation Research Questions

Methodology

Analysis

Paths

Deltas

Destination Pair

Conclusion

Methodology

Methodology Measurement Setup

Figure 2: Map of SamKnows probes

Figure 3: Example of measurement probe: SamKnows Whitebox 8.0¹

- $\blacktriangleright~\approx~100$ probes deployed around the world since 2014
- Deployed in dual-stacked residential networks, NRENs, business networks, research labs, data centers, IXPs, ...
- Active measurement studies from fixed-line networks

ТШТ

Introduction Motivation Research Questions

Methodology

Analysis Paths Deltas Destination Pair Content Caches

¹ https://blog.samknows.com/new-testing-superfast-broadband-27a7abcf1303 [accessed 2018-08-07]

- Hourly traceroute measurements over IPv4 & IPv6
 - Using scamper [3] for paris traceroute over ICMP
- Targets: YouTube media servers
 - Media servers identified by youtube test [1] that mimics video streaming from YouTube
 - DNS resolution for this streaming directly on the probe
 Redirected to best/closest cache, determined by YouTube
 - Identified IP addresses of media servers to scamper for measurements
 - ► Time period: since May 2016

ТИП

Introduction Motivation Research Questions

Methodology

Analysis Paths Deltas Destination Pai Content Caches

ТЛП

Introduction Motivation Research Questions

Methodology

Analysis

Paths

Deitas Destination Pi

Content Caches

Conclusion

Analysis

Analysis Paths

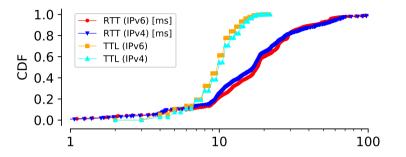
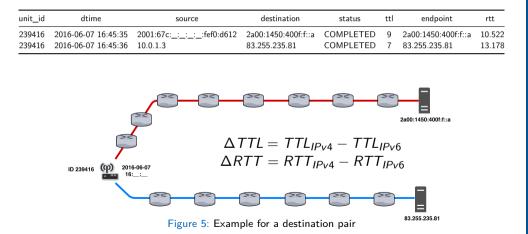


Figure 4: CDF of median IP path TTL and RTT


- Comparable number of paths observed
 - ▶ 78% with TTL \leq 12 (IPv4), \leq 11 (IPv6) → IPv6 paths more often shorter
 - ▶ 74% with RTT \leq 25 ms (IPv4), 72% over (IPv6) → IPv6 more often slower

ТЛП

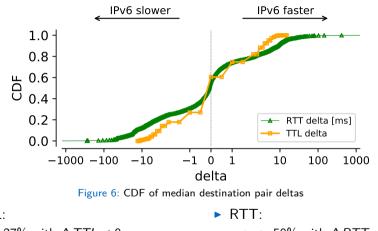
Introduction Motivation Research Questions Methodology Analysis Paths Deltas Destination Pairs Content Caches

Deltas

However, no direct comparison possible \Rightarrow look at *destination pairs*

ТЛП

Introduction Motivation Research Questions


.....

Analysi

Paths Deltas

Destination Pairs Content Caches

Destination Pairs: General

ТШП

Introduction Motivation Research Questions Methodology Analysis Paths Deltas Content Caches Conclusion

► TTL:

- 27% with $\Delta TTL < 0$
- 33% with $\Delta TTL = 0$
- 40% with $\Delta TTL > 0$

- \approx 50% with $\Delta RTT < 0$
- \approx 50% with $\Delta RTT > 0$

Destination Pairs: General

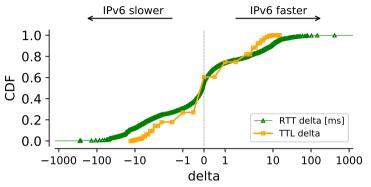


Figure 6: CDF of median destination pair deltas

- Overall:
 - ► TTL: 91% within [-5; +5]
 - RTT: 91% within [-20; +20] ms

ТШП

Introduction Mativation Research Questions Methodology Analysis Paths Deltas Destination Pairs Content Caches

- Content caches usually deployed within ISP networks
- In close proximity to users to reduce latency

ТИП

ntroduction Motivation Research Questions Methodology

Analysis

Paths

Deltas

Destination Pairs

Content Caches

- Content caches usually deployed within ISP networks
- In close proximity to users to reduce latency
- How to identify caches?
 - Matching AS numbers for source and destination \rightarrow src ASN == dst ASN

 - Lookups using RIPEstat²

² https://stat.ripe.net/

ТЛТ

Motivation Research Question Methodology Analysis

Deltas

Content Caches

Analysis Destination Pairs: Caches

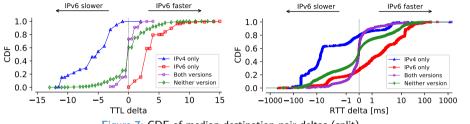
Possible scenarios for identification of caches when comparing between different address families.

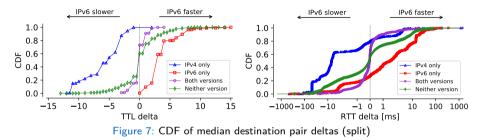
IPv6 IPv4	Cache	No Cache
Cache	both O	IPv4 only △
No Cache	IPv6 only □	neither \diamondsuit

ТИП

Motivation Methodology Analysis Paths Deltas Content Caches

Destination Pairs: Caches



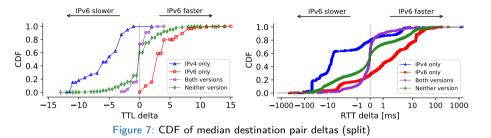

Figure 7: CDF of median destination pair deltas (split)

ТШП

ntroduction Motivation Research Questions Aethodology Analysis Paths Deltas Destination Pairs

Content Caches

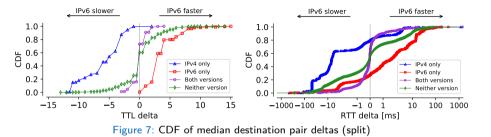
Destination Pairs: Caches



▶ IPv4 cache only (\triangle): shifted to left side; RTT lower over IPv4 for $\approx 80\%$

ТШТ

Introduction Motivation Research Question: Methodology Analysis Paths Deltas Destination Pairs Content Caches


Destination Pairs: Caches

- ▶ IPv4 cache only (\triangle): shifted to left side; RTT lower over IPv4 for $\approx 80\%$
- ► IPv6 cache only (□): paths shorter to IPv6 caches compared to IPv4 no-cache destinations; yet still higher RTTs in most cases

ТШП

Destination Pairs: Caches

- ▶ IPv4 cache only (\triangle): shifted to left side; RTT lower over IPv4 for \approx 80%
- ► IPv6 cache only (□): paths shorter to IPv6 caches compared to IPv4 no-cache destinations; yet still higher RTTs in most cases
- ▶ Both (O): deltas converging towards zero; 60% of the time faster over IPv4, 40% of the time faster over IPv6, however ≈ 80% within [-1,+1] ms

ТШП

Motivation Motivation Research Question Vethodology Analysis Paths Deltas Destination Pairs Content Caches

Analysis Content Caches: Distributions

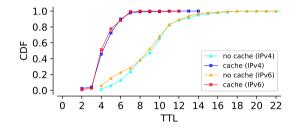


Figure 8: CDF of cache vs no cache path values for all traces (TTL)

- $\blacktriangleright\,\approx\,100\%$ of ISP caches reachable within 7 IP hops
- Cache vs no cache
 - $\blacktriangleright~\leq$ 6 IP hops for \approx 90% of the cache measurements
 - $\blacktriangleright~\leq$ 12 IP hops for \approx 89% of the no cache measurements

ТШП

Introduction Motivation Research Questions Methodology Analysis Paths Deltas Destination Pairs Content Caches

Analysis Content Caches: Distributions

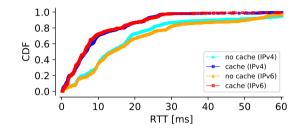


Figure 9: CDF of cache vs no cache path values for all traces (RTT)

- Majority of caches reachable within 20 ms (87%)
- For 80% of the measurements (no cache \rightarrow cache)
 - IPv4: 25 ms \rightarrow 17 ms; \approx $^{1/3}$ improvement
 - IPv6: 29 ms ightarrow 16 ms; pprox $^{1\!/_{2}}$ improvement

ТШП

Introduction Motivation Research Questions Methodology Analysis Paths Deltas Destination Pairs Content Caches Conclusion

ТШП

Introduction Motivation Research Questions

Methodology

Analysi

Paths

Deitas Destination P

Content Caches

Conclusion

1. Distance of caches?

Caches within 6 IP hops and 20 ms over both IPv4 and IPv6

ТШП

Motivation Research Questions

Analysis

Paths

Destination Pair

1. Distance of caches?

Caches within 6 IP hops and 20 ms over both IPv4 and IPv6

2.&3. Benefits of caches? Performance over IPv4 vs IPv6?

- ▶ *IP path length:* up to 6 hops lower (i.e. ¹⁄₂) for both IPv4 and IPv6
- Latency: up to pprox 10 ms lower; relative improvement of IPv6 caches higher
 - IPv4: up to 8 ms (¹/₃); IPv6: up to 13 ms (¹/₂)
- ► Surprise: IPv6 caches higher RTT than IPv4 non-caches despite lower TTL

ТШП

Motivation Research Question Methodology Analysis Paths Deltas Destination Pairs Content Caches

1. Distance of caches?

Caches within 6 IP hops and 20 ms over both IPv4 and IPv6

2.&3. Benefits of caches? Performance over IPv4 vs IPv6?

- ▶ *IP path length:* up to 6 hops lower (i.e. ½) for both IPv4 and IPv6
- \blacktriangleright Latency: up to \approx 10 ms lower; relative improvement of IPv6 caches higher
 - IPv4: up to 8 ms (¹/₃); IPv6: up to 13 ms (¹/₂)
- Surprise: IPv6 caches higher RTT than IPv4 non-caches despite lower TTL

Takeaways: Room for improvement regarding IPv6 content delivery:

- Ensure caches are dual-stacked within ISP networks (see \triangle and \Box cases),
- > Optimize delivery regarding performance, routing, forwarding, ...
- Caches are not the end of the story regarding IPv4 and IPv6 discrepancy

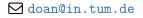
ТИП

ntroduction Motivation Research Questions **Methodology** Analysis Paths Deltas Destination Pairs Content Caches

1. Distance of caches?

Caches within 6 IP hops and 20 ms over both IPv4 and IPv6

2.&3. Benefits of caches? Performance over IPv4 vs IPv6?


- ▶ *IP path length:* up to 6 hops lower (i.e. ½) for both IPv4 and IPv6
- \blacktriangleright Latency: up to \approx 10 ms lower; relative improvement of IPv6 caches higher
 - IPv4: up to 8 ms (¹/₃); IPv6: up to 13 ms (¹/₂)
- Surprise: IPv6 caches higher RTT than IPv4 non-caches despite lower TTL

Takeaways: Room for improvement regarding IPv6 content delivery:

- Ensure caches are dual-stacked within ISP networks (see \triangle and \Box cases),
- Optimize delivery regarding performance, routing, forwarding, ...
- Caches are not the end of the story regarding IPv4 and IPv6 discrepancy

Dataset and code publicly available at:

https://github.com/tv-doan/youtube-traceroutes

ТИП

ntroduction Motivation Research Questions Methodology Analysis Paths Deltas Destination Pairs Content Caches

References

[1] AHSAN, S., BAJPAI, V., OTT, J., AND SCHÖNWÄLDER, J. Measuring YouTube from Dual-Stacked Hosts. In PAM (2015), vol. 8995 of Lecture Notes in Computer Science, Springer, pp. 249–261. https://doi.org/10.1007/978-3-319-15509-8_19.

[2] BAJPAI, V., AHSAN, S., SCHÖNWÄLDER, J., AND OTT, J. Measuring YouTube Content Delivery over IPv6. Computer Communication Review 47, 5 (2017), 2–11. http://doi.acm.org/10.1145/3155055.3155057.

[3] LUCKIE, M. J.

Scamper: a Scalable and Extensible Packet Prober for Active Measurement of the Internet.

In Internet Measurement Conference (2010), ACM, pp. 239-245. http://doi.acm.org/10.1145/1879141.1879171.

ТШП

Introduction Motivation Research Question Methodology Analysis Paths Deltas Destination Pairs Content Caches

ТШП

Appendix

Backup Slides

Analysis Temporal View

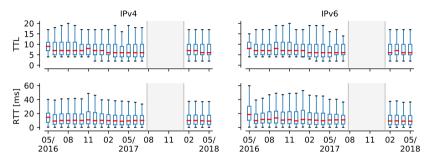


Figure 10: Boxplots of path TTL and RTT values, aggregated by month

- Median TTL across all months: 7 IP hops (both IPv4 and IPv6)
- Median RTT across all months: 9.9 ms (IPv4), 10.7 ms (IPv6)

ТИП

Analysis Intermediate IP Hops

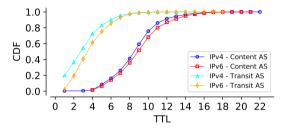


Figure 11: CDF of all TTL values by version and AS type³

 $TTL\approx7$ as a separator for both IPv4 and IPv6:

- Transit/Access ASes: $TTL \leq 7$ for 93%
- Content ASes: $TTL \ge 7$ for 85%

³ CAIDA AS Classification: https://www.caida.org/data/as-classification/

ТШП

Appendix

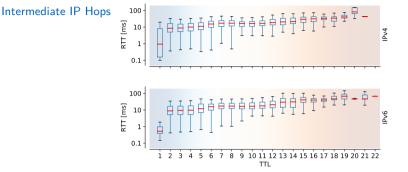


Figure 12: Boxplots of RTT by TTL

- Destination reached in *TTL* < 7 (blue gradient): ISP cache in Transit/Access AS
- Destination reached in TTL > 7 (orange gradient): origin content server in Content AS

Appendix