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Don’t Believe the Hype
Machine learning heading towards the “trough of disillusionment”
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Why Use Machine Learning?

e Effective and adaptive pattern mining
o “Learn” as the Data or Patterns Change
o Scale with Your Data
e Feature-extraction
o Network Engineer Knowledge
o Security Research
o Statistical Variables
e \Wide Variety of Algorithms and Architectures
o Supervised, Semisupervised and Unsupervised
o Ability to Adapt Your Target



What Networking Problems Can ML Help?

e Network Security
o Malicious Traffic Detection
o Malware Identification
o Data Loss Prevention
e Traffic Classification
o Application Identification
o QoS Policies
o Traffic Engineering
e Optimization / Predictive Maintenance
e Log Analysis



Decision on DCSO strategy

Specification of DCSO
services by cross-
company working groups

= Advisory Board members

= Enterprises and their
supply chain partners

= Public sector

Trustworthy information
exchange

Max. 30 members
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= Not aiming at profit maximization = Community

Governance of

security critical and
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in the area of cyber security

= ~100 employees = (Research) partners
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Setup For ML-Based Flow Analysis
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Feature Engineering — Part 1

“timestamp”: “timestamp":
1113047329232721300, 84818535923521311901,
| Tsrc-ip™: "spc-ip": "121.13.112.2",
"204.130.162.100", "dest-ip": "56.99.240.64",
"dest-ip": "192.41.140.28", "src-port": 443,
"src-port”: 443, "dest-port": 64238,
"dest-port”: 64238, "bytes-to-server": 66,
"bytes-to-server": 66, "bytes-to-client": @,
"bytes-to-client": 0, "pkts-to-server”: 1,
"pkts-to-server®: 1, "pkts-to-client": o,
"pkts-to-client": 0, "flags": 1
"flags": 1

Sensor PSFlow InFlow
Collect flows from network Pseudonymize/anonymize flows Aggregate pseudonymized
sensors / endpoints on the edge / gateway flows (e.g. by host, protocol,

communication pairs, ...)



Feature Engineering — Part 2
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Preliminary Results: Protocol Classification

Training with labeled flow data of finite
length (e.g. 128 time steps).

Architecture is able to learn
characteristics of individual protocols.
Error rate can be asymptotically reduced
by averaging over time.

Comparable performance to statistics-
based approaches, but more flexible.

So what?

To build real-world models, large data
sets of labeled flows are necessary.

We need more & better data!
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(detailed analysis & paper coming 2019)



Privacy Concerns

e Ability to Recover Secrets from Machine
Learning Models

e Sharing with Other Networks / Providers

e Utilizing Cloud Data Analysis tools and
vendors

e GDPR
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Secure PCAP Sharing

andreas@44: ~/projects/go/srcfgit... = andreas@44: /t : andreas@44: ~/.openvpn/kiprotect =
andreas@44:/tmp/pcap$ |

https://kiprotect.com/product/ipprotect.html



ML for Networks: Yes, We Can!

e Despite the hype, Machine Learning can help with real
networking problems

e Defining your problem, determining what algorithms to
use and gathering data (and, if needed, labeling the data)
are required

e Pseudonymization is an effective privacy-preserving
method for IP addresses, and using a structure-preserving
pseudonymization allows for data utility



Thank you!
Questions? We'd Love to hear them!
Or reach out anytime:

info@Kkiprotect.com
@KIProtect (Twitter)
https://github.com/kiprotect

Andreas Dewes Katharine Jarmul Andreas Lehner
andreas@Kkiprotect.com katharine@kiprotect.com andreas.lehner@dcso.de
@japh44 (Twitter) @kjam (Twitter) @DCSO_de (Twitter)
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