
Robust Routing Policy
Architecture

Job Snijders
NTT Communications

job@ntt.net

RIPE 77, Amsterdam, Country of Cheese

mailto:job@ntt.net

Robust Routing Policy Architecture

• Conceptual model of routing policy
• Routing policy terminology
• Routing policy design patterns
• Maximum Prefix Limits
• 2 Phase Pruning
• Classification & Execution
• Hints

RIPE 77, Amsterdam, Country of Cheese

Conceptual model & Terminology

• Attachment points
• Directionality

Router
AS

2914 second
Router

AS 2914

Router
AS

15562

IBGP

EBGP

ebgp-out ebgp-in ibgp-out ibgp-in

“One man’s ebgp-out is another man’s ebgp-in.”
– ancient Dutch proverb

RIPE 77, Amsterdam, Country of Cheese

router bgp 15562
neighbor 192.147.168.1 route-map AS2914-in in
neighbor 192.147.168.1 route-map AS2914-out out

!
route-map AS2914-in deny 10
match ip address prefix-list bogons-v4

route-map AS2914-in permit 10
match community graceful-shutdown
set local-preference 0

!

Example

Term

Direction

Attachment Point

Policy

RIPE 77, Amsterdam, Country of Cheese

ebgp-in Filtering – what to accept?

• Phase 1: Pruning: If Bad and Raw Input are sets, then the relative
complement of Bad in Raw Input, is the set of elements in Raw
Input but not in Bad: Raw Input ∖ Bad
• Phase 2: Allowlist ∩ Raw Input

Bad

Whitelist
Raw
Input

The Good Stuff
RIPE 77, Amsterdam, Country of Cheese

Raw Input in context of ebgp-in

• Raw Input is whatever your EBGP
neighbor announces to you
• Raw Input can contain anything, in

any quantity
• In IETF speak: “Adj-RIB-In”
• This is where maximum-prefix

limits must be applied!

Bad

WhitelistRaw
Input

Study resource:
NLNOG Filter Guide: http://bgpfilterguide.nlnog.net/RIPE 77, Amsterdam, Country of Cheese

http://bgpfilterguide.nlnog.net/

Maximum prefix limits in ebgp-in

• These limits are a design feature to ensure the network inherently
responds in a way that will cause no or minimal harm to the network
or the global Internet.

Study resource:
Fail-safe in engineering: https://en.wikipedia.org/wiki/Fail-safe
Control Theory: https://en.wikipedia.org/wiki/Control_theory

RIPE 77, Amsterdam, Country of Cheese

https://en.wikipedia.org/wiki/Fail-safe
https://en.wikipedia.org/wiki/Control_theory

What happens when limits are applied in pre-policy
during a full table leak:

Maximum Prefix value

invalid

Time

valid

Session
Teardown We’re both safe

now

RIPE 77, Amsterdam, Country of Cheese

What happens when limits are applied post-policy

Maximum Prefix value

Normal announcements

Full table leak

Invalid paths that made it
through the whitelist

Filtered
announcements

Time RIPE 77, Amsterdam, Country of Cheese

Pre vs Post policy prefix limits in ebgp-in

Pre policy limits:
• Protect against memory exhaustion
• Keep in mind: a pre-policy limit only works if the router remembers the list of

rejected routes
• Protect against route leaks

Post policy limits:
• Protect against RIB+FIB exhaustion
• To enforce contractual agreements

RIPE 77, Amsterdam, Country of Cheese

Maximum prefix limits in context of ebgp-in

Vendor Pre-Policy
(the most effective place)

Post-Policy

Cisco IOS XR Not available “maximum-prefix”

Cisco IOS XE Not available “maximum-prefix”

Juniper Junos ”prefix-limit” “accepted-prefix-limit”
or

“prefix-limit” + “keep none”
Nokia SR-OS “prefix-limit” Not available

NIC.CZ’s BIRD “import keep filtered”
+

“receive limit”

“import limit”
or

“receive limit”
OpenBSD’s OpenBGPD “max-prefix” Not available

RIPE 77, Amsterdam, Country of Cheese

Outbound maximum limits?

This was raised before on nanog@nanog.org – we should work to get
outbound maximum prefix limits to to use in ebgp-out

A “self-destruct the session” control action, in case you end up
announcing far more than plausible.

Only BIRD supports this today. We’ll need to standardize this in IETF.

RIPE 77, Amsterdam, Country of Cheese

mailto:nanog@nanog.org

Rejecting Bad – defense in depth in ebgp-in

• Bogon or Private ASNs

• Bogon or Private Prefixes

• Leaks (example: NTT seeing Comcast via Level3)

• IXP more-specifics

• RPKI Invalid announcements

• Your own space and more-specifics

Bad

Whitelist
Raw

InputStudy resource:
NLNOG BGP Filter Guide

http://bgpfilterguide.nlnog.net/
RIPE 77, Amsterdam, Country of Cheese

http://bgpfilterguide.nlnog.net/

Creating a whitelist for ebgp-in

Bad

WhitelistRaw
Input

Study resource:
ARIN-WHOIS:
https://www.youtube.com/watch?v=L2Zo9AqQqww

Overview of IRR and RPKI Sources:
https://ripe76.ripe.net/archives/video/22/

RIPE 77, Amsterdam, Country of Cheese

https://www.youtube.com/watch?v=L2Zo9AqQqww
https://ripe76.ripe.net/archives/video/22/

RIPE 77, Amsterdam, Country of Cheese

“When in doubt,
always use BGP communities.”

- traditional Belgian saying

RIPE 77, Amsterdam, Country of Cheese

What is a BGP community?

“A community is a group of destinations which
share some common property.”

- RFC 1997
Study resource:
RFC 1997: https://tools.ietf.org/html/rfc1997
RFC 1998: https://tools.ietf.org/html/rfc1998

RIPE 77, Amsterdam, Country of Cheese

https://tools.ietf.org/html/rfc1997
https://tools.ietf.org/html/rfc1998

How to use BGP communities?

• Classification on the ebgp-in attachment point
• “set community XXX additive”

• Execution on the ibgp-in and ebgp-out attachment point
• “match community YYY”

Common Classifiers
• “learned from transit customer”
• “route via peering partner”
• “learned from upstream provider”
• “route learned in Europe”
• “route learned in Denver, CO”

Common Execution Outcomes
• Announce to this EBGP neighbor
• Do not announce
• Prepend AS_PATH once

Study resource:
RFC 8195 https://tools.ietf.org/html/rfc8195

RIPE 77, Amsterdam, Country of Cheese

https://tools.ietf.org/html/rfc8195

Day in the life of a BGP announcement

1. AS 15562 announces 192.147.168.0/24 to AS 2914
2. The routing policy at the ebgp-in attachment point in 2914 doesn’t

reject the announcement: it was not a bogon, and part of the
whitelist

3. Still inside ebgp-in, AS 2914’s policy classifies the route as “from
customer” and “learned in Europe” using BGP communities

4. Still inside ebgp-in, features such as LOCAL_PREF modification,
blackholing are executed

5. The route announcement propagates to other 2914 routers

RIPE 77, Amsterdam, Country of Cheese

Day in the life of a BGP announcement (cont.)

6. Announcement passes through ibgp-in, this is an attachment point
that offers opportunity for advanced features such as selective
blackholing, traffic engineering for anycasters, etc.

7. Announcement enters ebgp-out, at this attachment point the
classifiers decide whether the route will be announced, and final
features are applied such as prepends

RIPE 77, Amsterdam, Country of Cheese

Example Classifier / Execution matrix

Classifier
(attached in ebgp-in) ebgp-out to customer ebgp-out to peer ebgp-out to upstream

Learned from customer accept accept accept

Learned from peer accept reject reject

Learned from upstream accept reject reject

NO CLASSIFIER reject reject reject

RIPE 77, Amsterdam, Country of Cheese

Without a classifier, reject at ebgp-out?!
• ”Reject routes without communities in ebgp-out” coincidentally is an

incredible safety device, consider:
• What if you connect a BGP speaker to your network and don’t configure

policies?
• What if you accidentally remove the routing policy at the ebgp-in

attachment point on a session with one of your upstreams?
• If the route does not contain BGP communities that provide explicit guidance

on what to do – the route should not be propagated
• The worst way of configuring ebgp-out policies is doing only a match on a

prefix-list and calling it a day.
• Bonus: as your network grows, using BGP communities is the least amount of

work!
RIPE 77, Amsterdam, Country of Cheese

Without a classifier, reject at ebgp-out?!
• ”Reject routes without communities in ebgp-out” is an incredible safety

device.

• We call this “Robust Termination of the routing policy”

• By applying the Fail Closed principle we prioritize security. The network
“outage” that results from a failure to correctly set BGP communities on the
route is just a delay in the provisioning process. This is far less costly than
leaking.

RIPE 77, Amsterdam, Country of Cheese

Avoid regular expressions where possible.

• Trying to be clever can result in public embarrassment
• your coworkers will thank you if grep just works

“ Always code as if the guy who ends up maintaining your routing policy will be a
violent psychopath who knows where you live. Write routing policy for readability.”

- Adaption of John F. Wood’s motto, 1991

Curse or policy? ^\(6(451[2-9]|4[6-9]..|5...)(_6(451[2-9]|4[6-9]..|5...))*\)_.*\(

RIPE 77, Amsterdam, Country of Cheese

Write separate policies and prefix-lists for IPv4 and
IPv6
• What is the meaning of an IPv4 prefix-list match on an IPv6 route?

Undefined?

• Don’t run IPv4 over IPv6 or vice versa on EBGP: each AFI their own

session

Some things simply don’t mix very well… J

RIPE 77, Amsterdam, Country of Cheese

How many policies to generate?

• One separate policy per ASN per ebgp-in attachment point
• You need per-ASN unique prefix-list filters

• Policies for ebgp-out often can be shared across customers
• Peering/Upstreams may share an ebgp-out, if you can do conditional

matching inside the policy for per-peer specific outbound traffic
engineering (otherwise generate ebgp-out per-peer)
• ibgp-out is often the same across the whole network
• ibgp-in is often generated per-device (for selective blackholing &

friends)

RIPE 77, Amsterdam, Country of Cheese

Overview: so, how many policies are we talking?

Attachment
point

When / where to create Count Order of magnitude in NTT

ebgp-in Per EBGP neighbor, per device, per AFI N EBGP neighbors * 2 Tens of thousands

ebgp-out Per group (customers, peers, etc), per AFI N groups * 2 High hundreds

ibgp-in Per device, per AFI N devices * 2 Low hundreds

ibgp-out Network wide, one per AFI 2 1*

RIPE 77, Amsterdam, Country of Cheese

Avoid “set community X” to delete communities

• Some BGP implementations delete all communities and add X
• Some BGP implementations delete some communities and add X
• Some BGP implementations add X, and don’t delete anything
• Instead: use “delete community Y”, “set community X additive”
• Be precise and concise, delete as little as possible.

NTT went from tens of thousands of instances of “set community” to just a few
hundred after implementing support for GRACEFUL_SHUTDOWN.

Study resource:
Well-known Communities behavior: https://tools.ietf.org/html/draft-ymbk-grow-wkc-behavior

RIPE 77, Amsterdam, Country of Cheese

https://tools.ietf.org/html/draft-ymbk-grow-wkc-behavior-00

What to communities to delete?

• Network administrators SHOULD scrub inbound communities with
their number in the high-order bits, and allow only those
communities that customers/peers can use as a signaling
mechanism.
• Networks administrators SHOULD NOT remove other communities

applied on received routes.
• This may be the one place where regular expressions are acceptable

Study resources:
RFC 7454: https://tools.ietf.org/html/rfc7454#section-11

RIPE 77, Amsterdam, Country of Cheese

https://tools.ietf.org/html/rfc7454

What to communities to send?

• Send at least your geolocation BGP communities to EBGP
• Just like we ask people to be considerate in what they delete, we

now ask to be conservative on how many communities you send to
others.
• Rule of thumb: don’t send more than 4 BGP communities per route
• Publicly document what your communities mean, on your own

website

RIPE 77, Amsterdam, Country of Cheese

What happens when no routing policy is defined at the EBGP attachment
points? There now is a RFC that defines what should happen: safety first, don’t
exchange routes!
• Cisco IOS XR, BIRD 2.0.2, and OpenBGPD 6.4 support RFC 8212 natively !
• On Arista this can be enabled under “router bgp …”:

bgp missing-policy direction in action deny
bgp missing-policy direction out action deny

• On Juniper Junos this can be done with a SLAX script (no native support yet):
https://github.com/packetsource/rfc8212-junos
• On Nokia support is coming in 2019-2020.
• Ask your vendors!

RFC 8212 – Default Deny on EBGP

RIPE 77, Amsterdam, Country of Cheese

https://github.com/packetsource/rfc8212-junos

Questions, Comments – job@ntt.net

RIPE 77, Amsterdam, Country of Cheese

mailto:job@ntt.net

