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Robust Routing Policy Architecture

• Conceptual model of routing policy
• Routing policy terminology
• Routing policy design patterns
• Maximum Prefix Limits
• 2 Phase Pruning
• Classification & Execution
• Hints
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Conceptual model & Terminology

• Attachment points
• Directionality

Router
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2914 second
Router

AS 2914

Router
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ebgp-out ebgp-in ibgp-out ibgp-in

“One man’s ebgp-out is another man’s ebgp-in.”
– ancient Dutch proverb
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router bgp 15562
neighbor 192.147.168.1 route-map AS2914-in in
neighbor 192.147.168.1 route-map AS2914-out out

!
route-map AS2914-in deny 10
match ip address prefix-list bogons-v4

route-map AS2914-in permit 10
match community graceful-shutdown
set local-preference 0

!

Example

Term

Direction

Attachment Point

Policy
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ebgp-in Filtering – what to accept?

• Phase 1: Pruning: If Bad and Raw Input are sets, then the relative 
complement of Bad in Raw Input, is the set of elements in Raw 
Input but not in Bad: Raw Input ∖ Bad
• Phase 2: Allowlist ∩ Raw Input

Bad

Whitelist
Raw 
Input

The Good Stuff
RIPE 77, Amsterdam, Country of Cheese



Raw Input in context of ebgp-in

• Raw Input is whatever your EBGP 
neighbor announces to you
• Raw Input can contain anything, in 

any quantity
• In IETF speak: “Adj-RIB-In”
• This is where maximum-prefix 

limits must be applied!

Bad

WhitelistRaw 
Input

Study resource:
NLNOG Filter Guide: http://bgpfilterguide.nlnog.net/RIPE 77, Amsterdam, Country of Cheese
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Maximum prefix limits in ebgp-in

• These limits are a design feature to ensure the network inherently 
responds in a way that will cause no or minimal harm to the network 
or the global Internet.

Study resource:
Fail-safe in engineering: https://en.wikipedia.org/wiki/Fail-safe
Control Theory: https://en.wikipedia.org/wiki/Control_theory
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What happens when limits are applied in pre-policy 
during a full table leak:

Maximum Prefix value

invalid

Time 

valid

Session
Teardown We’re both safe 

now
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What happens when limits are applied post-policy

Maximum Prefix value

Normal announcements

Full table leak

Invalid paths that made it 
through the whitelist

Filtered
announcements
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Pre vs Post policy prefix limits in ebgp-in

Pre policy limits:
• Protect against memory exhaustion
• Keep in mind: a pre-policy limit only works if the router remembers the list of 

rejected routes
• Protect against route leaks

Post policy limits:
• Protect against RIB+FIB exhaustion
• To enforce contractual agreements
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Maximum prefix limits in context of ebgp-in

Vendor Pre-Policy
(the most effective place)

Post-Policy

Cisco IOS XR Not available “maximum-prefix”

Cisco IOS XE Not available “maximum-prefix”

Juniper Junos ”prefix-limit” “accepted-prefix-limit”
or

“prefix-limit” + “keep none”
Nokia SR-OS “prefix-limit” Not available

NIC.CZ’s BIRD “import keep filtered”
+

“receive limit”

“import limit”
or

“receive limit”
OpenBSD’s OpenBGPD “max-prefix” Not available
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Outbound maximum limits?

This was raised before on nanog@nanog.org – we should work to get 
outbound maximum prefix limits to to use in ebgp-out

A “self-destruct the session” control action, in case you end up 
announcing far more than plausible. 

Only BIRD supports this today. We’ll need to standardize this in IETF. 
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Rejecting Bad – defense in depth in ebgp-in

• Bogon or Private ASNs

• Bogon or Private Prefixes

• Leaks (example: NTT seeing Comcast via Level3)

• IXP more-specifics

• RPKI Invalid announcements

• Your own space and more-specifics

Bad

Whitelist
Raw 

InputStudy resource:
NLNOG BGP Filter Guide

http://bgpfilterguide.nlnog.net/
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Creating a whitelist for ebgp-in

Bad

WhitelistRaw 
Input

Study resource:
ARIN-WHOIS: 
https://www.youtube.com/watch?v=L2Zo9AqQqww

Overview of IRR and RPKI Sources:
https://ripe76.ripe.net/archives/video/22/
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“When in doubt,
always use BGP communities.”

- traditional Belgian saying
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What is a BGP community?

“A community is a group of destinations which 
share some common property.”

- RFC 1997
Study resource:
RFC 1997: https://tools.ietf.org/html/rfc1997
RFC 1998: https://tools.ietf.org/html/rfc1998
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How to use BGP communities?

• Classification on the ebgp-in attachment point
• “set community XXX additive”

• Execution on the ibgp-in and ebgp-out attachment point
• “match community YYY”

Common Classifiers
• “learned from transit customer”
• “route via peering partner”
• “learned from upstream provider”
• “route learned in Europe”
• “route learned in Denver, CO”

Common Execution Outcomes
• Announce to this EBGP neighbor
• Do not announce
• Prepend AS_PATH once

Study resource:
RFC 8195 https://tools.ietf.org/html/rfc8195
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Day in the life of a BGP announcement

1. AS 15562 announces 192.147.168.0/24 to AS 2914
2. The routing policy at the ebgp-in attachment point in 2914 doesn’t 

reject the announcement: it was not a bogon, and part of the 
whitelist

3. Still inside ebgp-in, AS 2914’s policy classifies the route as “from 
customer” and “learned in Europe” using BGP communities

4. Still inside ebgp-in, features such as LOCAL_PREF modification, 
blackholing are executed

5. The route announcement propagates to other 2914 routers
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Day in the life of a BGP announcement (cont.)

6. Announcement passes through ibgp-in, this is an attachment point 
that offers opportunity for advanced features such as selective 
blackholing, traffic engineering for anycasters, etc.

7. Announcement enters ebgp-out, at this attachment point the 
classifiers decide whether the route will be announced, and final 
features are applied such as prepends
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Example Classifier / Execution matrix

Classifier
(attached in ebgp-in) ebgp-out to customer ebgp-out to peer ebgp-out to upstream

Learned from customer accept accept accept

Learned from peer accept reject reject

Learned from upstream accept reject reject

NO CLASSIFIER reject reject reject
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Without a classifier, reject at ebgp-out?!
• ”Reject routes without communities in ebgp-out” coincidentally is an 

incredible safety device, consider:
• What if you connect a BGP speaker to your network and don’t configure 

policies?
• What if you accidentally remove the routing policy at the ebgp-in

attachment point on a session with one of your upstreams?
• If the route does not contain BGP communities that provide explicit guidance 

on what to do – the route should not be propagated
• The worst way of configuring ebgp-out policies is doing only a match on a 

prefix-list and calling it a day.
• Bonus: as your network grows, using BGP communities is the least amount of 

work!
RIPE 77, Amsterdam, Country of Cheese



Without a classifier, reject at ebgp-out?!
• ”Reject routes without communities in ebgp-out” is an incredible safety 

device.

• We call this “Robust Termination of the routing policy”

• By applying the Fail Closed principle we prioritize security. The network 
“outage” that results from a failure to correctly set BGP communities on the 
route is just a delay in the provisioning process. This is far less costly than 
leaking. 
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Avoid regular expressions where possible. 

• Trying to be clever can result in public embarrassment
• your coworkers will thank you if grep just works

“ Always code as if the guy who ends up maintaining your routing policy will be a 
violent psychopath who knows where you live. Write routing policy for readability.”

- Adaption of John F. Wood’s motto, 1991

Curse or policy? ^\(6(451[2-9]|4[6-9]..|5...)(_6(451[2-9]|4[6-9]..|5...))*\)_.*\(
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Write separate policies and prefix-lists for IPv4 and 
IPv6
• What is the meaning of an IPv4 prefix-list match on an IPv6 route? 

Undefined?

• Don’t run IPv4 over IPv6 or vice versa on EBGP: each AFI their own 

session

Some things simply don’t mix very well… J
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How many policies to generate?

• One separate policy per ASN per ebgp-in attachment point
• You need per-ASN unique prefix-list filters

• Policies for ebgp-out often can be shared across customers
• Peering/Upstreams may share an ebgp-out, if you can do conditional 

matching inside the policy for per-peer specific outbound traffic 
engineering (otherwise generate ebgp-out per-peer)
• ibgp-out is often the same across the whole network
• ibgp-in is often generated per-device (for selective blackholing & 

friends)
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Overview: so, how many policies are we talking?

Attachment 
point

When / where to create Count Order of magnitude in NTT

ebgp-in Per EBGP neighbor, per device, per AFI N EBGP neighbors * 2 Tens of thousands

ebgp-out Per group (customers, peers, etc), per AFI N groups * 2 High hundreds

ibgp-in Per device, per AFI N devices * 2 Low hundreds

ibgp-out Network wide, one per AFI 2 1*
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Avoid “set community X” to delete communities

• Some BGP implementations delete all communities and add X
• Some BGP implementations delete some communities and add X
• Some BGP implementations add X, and don’t delete anything
• Instead: use “delete community Y”, “set community X additive”
• Be precise and concise, delete as little as possible.

NTT went from tens of thousands of instances of “set community” to just a few 
hundred after implementing support for GRACEFUL_SHUTDOWN.

Study resource:
Well-known Communities behavior: https://tools.ietf.org/html/draft-ymbk-grow-wkc-behavior
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What to communities to delete?

• Network administrators SHOULD scrub inbound communities with 
their number in the high-order bits, and allow only those 
communities that customers/peers can use as a signaling 
mechanism.
• Networks administrators SHOULD NOT remove other communities 

applied on received routes.
• This may be the one place where regular expressions are acceptable

Study resources:
RFC 7454: https://tools.ietf.org/html/rfc7454#section-11
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What to communities to send?

• Send at least your geolocation BGP communities to EBGP
• Just like we ask people to be considerate in what they delete, we 

now ask to be conservative on how many communities you send to 
others.
• Rule of thumb: don’t send more than 4 BGP communities per route
• Publicly document what your communities mean, on your own 

website
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What happens when no routing policy is defined at the EBGP attachment 
points? There now is a RFC that defines what should happen: safety first, don’t 
exchange routes!
• Cisco IOS XR, BIRD 2.0.2, and OpenBGPD 6.4 support RFC 8212 natively !
• On Arista this can be enabled under “router bgp …”:

bgp missing-policy direction in action deny
bgp missing-policy direction out action deny

• On Juniper Junos this can be done with a SLAX script (no native support yet): 
https://github.com/packetsource/rfc8212-junos
• On Nokia support is coming in 2019-2020.
• Ask your vendors!

RFC 8212 – Default Deny on EBGP
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Questions, Comments – job@ntt.net
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