
Snabb: Open
Source Meets
Dataplane
RIPE77, October 2018, Amsterdam

Andy Wingo | wingo@igalia.com |
@andywingo

this
talk

Why? The problem solved by Snabb

How? Snabb from the ground up

What? What’s in the box

Who? Snabb in the wild

why? Ever want to deploy a new RFC, but no
vendor is selling it?

Maybe it’s not even an RFC yet?

10 years ago – too bad

Now – open source software +
commodity servers

software? User-space data planes

Avoid the kernel, handle all data in
user-space

Snabb, DPDK, VPP (fd.io)

user
space

Tell Linux to forget about NIC

Mmap NIC’s PCI registers into address
space

Read and write memory == read
and write PCI registers

❧

Poke registers as needed to bring up
NIC

Set up a ring buffer for RX/TX

Busy-loop to take packets from RX,
process, send to TX

advantage You get the whole packet

No hazard for straying off device-
supported hot-path

Program using whatever technology
you want: C, Rust, Lua, Scheme, ...

“It’s just programming”

Hire anyone you want to modify the
programs

limits Limited by PCI bandwidth

Limited to ~10-50Gbps/CPU core
(parallelization possible)

Tangential to containerization /
kubernetes / openstack hellscape

an
aside
on
snabb

Goal: “rewritable software”

The hard part: searching program-
space for elegant hacks

“Is that all? I could rewrite that in a
weekend.”

in a
nutshell

A snabb program consists of a graph of
apps

Apps are connected by directional links

A snabb program processes packets in
units of breaths

program
code

Instantiate apps

Declare links

Breathe

local Intel82599 =
 require("apps.intel.intel_app").Intel82599
local PcapFilter =
 require("apps.packet_filter.pcap_filter").PcapFilter

local c = config.new()

config.app(c, "nic", Intel82599, {pciaddr="82:00.0"})
config.app(c, "filter", PcapFilter, {filter="tcp port 80"})

config.link(c, "nic.tx -> filter.input")
config.link(c, "filter.output -> nic.rx")

engine.configure(c)

while true do engine.breathe() end

snabb
is
written
in lua

Short and sweet programs

LuaJIT does the heavy lifting

High-performance just-in-time
compilation, applied to networking
domain

Lua all the way down – packet
processing, not just configuration

breaths Each breath has two phases:

Inhale a batch of packets into the
network

❧

Process those packets❧

To inhale, run pull functions on apps
that have them

To process, run push functions on apps
that have them

Pull function for built-in Intel82599 app

function Intel82599:pull ()
 for i = 1, engine.pull_npackets do
 if not self.dev:can_receive() then break end
 local pkt = self.dev:receive()
 link.transmit(self.output.tx, pkt)
 end
end

Push function for built-in PcapFilter app

function PcapFilter:push ()
 while not link.empty(self.input.rx) do
 local p = link.receive(self.input.rx)
 if self.accept_fn(p.data, p.length) then
 link.transmit(self.output.tx, p)
 else
 packet.free(p)
 end
 end
end

packets
and
links

struct packet {
 uint16_t length;
 unsigned char data[10*1024];
};

struct link {
 struct packet *packets[1024];
 // the next element to be read
 int read;
 // the next element to be written
 int write;
};
// (Some statistics counters elided)

voilà At this point, you can rewrite Snabb

(Please do!)

But you might want to use it as-is...

unboxing $ git clone \
 https://github.com/snabbco/snabb
$ cd snabb
$ make
$./src/snabb

What’s in there?

How are people using it?

apps I/O: Intel i210/i350/82599, Mellanox
ConnectX4/5, TAP, AF_PACKET,
AF_XDP, vhost/virtio, pcap...

L2: ARP, NDP, learning bridge,
l2vpn...

L3: IPsec, ICMP, fragmentation...

+: IPFIX, lwAFTR, DPI, firewall,
pflang...

Apps: learning bridge, NIC

yang App graph as function of YANG-
modelled configuration

Run-time config/state query,
reconfigure

Multi-process

Statistics aggregation

https://snabbco.github.io/#ptree

libraries LPM, JSON, fast raw hash tables,
protocol stack, timer wheel, profiling,
packet match domain-specific
language compilers, NUMA/CPU
binding, RRD files...

https://snabbco.github.io/

no full
router
yet

Some support for receiving routes
from Linux

We would love to flesh this out!

snabb
in the
wild

See lightning talk “8 ways network
engineers use Snabb” for more
examples

exploratory
analysis

Flexibility, expressiveness, and rapid
development of scapy, the speed to run
live

A large CDN uses Snabb in this way
internally

layer 2
vpn

github.com/alexandergall/snabb
l2vpn branch

$ snabb l2vpn l2vpn.conf

RFC 4664 layer 2 learning bridge over
IPv6

Built by SWITCH network engineer
Alexander Gall because what he
needed wasn’t on offer

In production linking academic sites in
Switzerland

ipsec
vpn

Vita: https://github.com/inters/
vita

Secure VPN between sites, IPSec, 1-10
Gbps/core

Funded by NLnet Foundation

border
router
tunnel
endpoint

$ snabb lwaftr run lwaftr.conf

Lightweight 4-over-6 AFTR: processes
all IPv4 traffic for a network

YANG-enabled, runtime
reconfigurable

Multi-process: one instance can
manage many NICs in a machine

See K. Zorbadelos (OTE) at RIPE76:
https://ripe76.ripe.net/archives/
video/30/

join
us!

https://github.com/snabbco/snabb

snabb.slack.com (see Github page for
join link)

wingo@igalia.com, @andywingo

Happy hacking!

