Snabb: Open
Source Meets

Dataplane

RIPE77, October 2018, Amsterdam

Andy Wingo | wingo@igalia.com |
@andywingo

this Why? The problem solved by Snabb
talk How? Snabb from the ground up
What? What’s in the box
Who? Snabb in the wild

Why'p Ever want to deploy a new RFC, but no
vendor 1s selling 1t?

Maybe it’s not even an RFC yet?
10 years ago — too bad

Now — open source software +
commodity servers

S()ftware? User-space data planes

Avoid the kernel, handle all data in
user-space

Snabb, DPDK, VPP (1d.io)

user Tell Linux to forget about NIC

space Mmap NIC’s PCI registers into address
space

- Read and write memory == read
and write PCI registers

Poke registers as needed to bring up
NIC

Set up a ring buffer for RX/TX

Busy-loop to take packets from RX,
process, send to TX

advantage You get the whole packet

No hazard for straying otf device-
supported hot-path

Program using whatever technology
you want: C, Rust, Lua, Scheme, ...

“It’s just programming”

Hire anyone you want to modify the
programs

limits Limited by PCI bandwidth

Limited to ~10-50Gbps/CPU core
(parallelization possible)

Tangential to containerization /
kubernetes / openstack hellscape

an Goal: “rewritable sottware”

aside The hard part: searching program-
on space for elegant hacks

“Is that all? I could rewrite that in a

snabb weekend.”

1n a A snabb program consists of a graph of
nutshell P

Apps are connected by directional links

A snabb program processes packets in
units of breaths

prograiil Instantiate apps
code Declare links

Breathe

Llocal Intel82599 =
require("apps.intel.intel app").Intel82599

Llocal PcapFilter =
require("apps.packet filter.pcap filter").PcapFilter

local ¢ = config.new()

config.app(c, "nic", Intel82599, {pciaddr="82:00.0"})
config.app(c, "filter", PcapFilter, {filter="tcp port 80"})

config.link(c, "nic.tx -> filter.input")
config.link(c, "filter.output -> nic.rx")

engine.configure(c)

while true do engine.breathe() end

§nabb

1S
written
1n lua

Short and sweet programs
LuaJIT does the heavy lifting

High-performance just-in-time
compilation, applied to networking
domain

Lua all the way down — packet
processing, not just configuration

breaths Each breath has two phases:

- Inhale a batch of packets into the
network

2 Process those packets

To 1inhale, run pull functions on apps
that have them

To process, run push functions on apps
that have them

Pull function for built-in Intel82599 app

function Intel82599:pull ()
for 1 = 1, engine.pull npackets do
1f not self.dev:can receive() then break end
local pkt = self.dev:receive()
Llink.transmit(self.output.tx, pkt)
end
end

Push function for built-in PcapFilter app

function PcapFilter:push ()
while not link.empty(self.input.rx) do
local p = link.receive(self.1input.rx)
1f self.accept fn(p.data, p.length) then
link.transmit(self.output.tx, p)
else
packet.free(p)
end
end
end

struct packet {
paCketS uintlo t Llength;

ZiIlCl unsigned char data[10*1024];

. b
links
struct link {

struct packet *packets[1024];
// the next element to be read
int read;
// the next element to be written
int write;

s

// (Some statistics counters elided)

V()ilé At this point, you can rewrite Snabb
(Please do!)

But you might want to use it as-1is...

" $ git clone \
unboxmg https://github.com/snabbco/snabb

$ cd snabb
$ make
$./src/snabb

What’s 1in there?

How are people using it?

apps I/0: Intel 1210/1350/82599, Mellanox
ConnectX4/5, TAP, AF PACKET,
AF XDP, vhost/virtio, pcap...

L2: ARP, NDP, learning bridge,
l2vpn...

L3: IPsec, ICMP, fragmentation...

+: IPFIX, IWAFTR, DPI, firewall,
pilang...

Apps: learning bridge, NIC

yalg App graph as function of YANG-
modelled configuration

Run-time config/state query,
reconfigure

Multi-process
Statistics aggregation
https://snabbco.github.1o/#ptree

libraries LPM, JSON, fast raw hash tables,
protocol stack, timer wheel, profiling,

packet match domain-specific
language compilers, NUMA/CPU
binding, RRD files...

https://snabbco.github.10/

Nno full Some support for receiving routes

router from Linux |
We would love to tlesh this out!
yet

§nabb See .lightning talk “8 ways network
in the engineers use Snabb” for more

. examples
wild

eXpl()I'at()I‘y Flexibility, expressiveness, and rapid
development of scapy, the speed to run

analysis live

A large CDN uses Snabb in this way
internally

github.com/alexandergall/snabb
layer 2 # L2vpn branch

vpI1l
$ snabb 12vpn L2vpn.conf

RFC 4664 layer 2 learning bridge over
IPv6

Built by SWITCH network engineer
Alexander Gall because what he
needed wasn’t on offer

In production linking academic sites in
Switzerland

ipsec Vita: https://github.com/inters/

vita
vVpll

Secure VPN between sites, IPSec, 1-10
Gbps/core

Funded by NLnet Foundation

b()rder $ snabb lwaftr run lwaftr.conf

Lightweight 4-over-6 AFTR: processes
router all IPv4 traffic for a network
tunnel. YANG-enabled, runtime
endp()lnt reconfigurable

Multi-process: one instance can
manage many NICs in a machine

See K. Zorbadelos (OTE) at RIPE76:
https://ripe/76.ripe.net/archives/
video/30/

jOiIl https://github.com/snabbco/snabb
us! snabb. slack. com (see Github page tor
join link)
wilngo@igalia.com, @ndywingo

Happy hacking!

