
DNS over anything but UDP: Implications
Ólafur Guðmundsson

154+
Data centers globally

The Cloudflare network (DNS, DDoS, CDN, WAF, more)

154+
DNS resolver locations

154+
DNS authoritative locations

DNS challenges at scale

Authoritative DNS
Data distribution

Resolving Origin names:
DNS “distance” and unreliable

Public resolver:
DNS “distance” and unreliable

DDoS, Route Hijacks, Injected Answers

Distances

Packet drops

Timeouts

Detecting EDNS0
support

Server selection

Retransmission policy

Forged answers

Firewalls

Why mostly UDP ?

Fast, no-state in OS on servers
works in 1 RTT
Easy to start

BUT ……..

not every place has perfect network

I was a big UDP bigot

We know how it works

Internet has changed
more bad actors

UDP issues: connection less

● No flow control
○ DNS software must implement

● Fragments
○ Blocked, size issues …

● In the clear
● Forged answers

○ First one wins
○ On-path attacker wins always

Retry
EDNS capability
discovery
Path MTU discovery
Old broken software
Lots of state to store,
and update.

DNS developers not good
transport protocol
designers
Bad defaults
Not updated
First world centric

Privacy leaks
Packet inspection
Easy to lie

Connections solve what ?

● Fragmentations and size issues
● Flow control and retry policy
● Better integrity in answers
● Get firewalls out of the way

● Simpler clients and resolvers

Lots of DNS “servers” do
not answer over TCP or
any other connection
oriented protocol

TCP is badly/not
supported in some
existing code bases

Firewalls do may or may
not pass through

Connection oriented transports
There are many different transport protocols
Each address different solution spaces

DNS over reliable transport

DNS inherits modern properties
● Flow control
● No more fragmenting
● Authenticated connections

Drawback: Connection setup and
teardown

Do One Thing Well,
outsource others

Need to separate flow
control from message
integrity

DNS over TCP

Part of DNS from day one
Considered: Slow and high overhead

But: “Long” lived connections with out-of-order
processing bring cost down to net gain

TCP has got much better than you
learned in school!!

Adds:
Flow Control,

Minimal integrity,

Eliminates retries to
same address

No Fragments or size
issues

● Defined for stub to recursor
○ RFC7858[1] & RFC8310[2] on port 853

● Acts like normal TCP connection
○ setup is different and more

expensive
○ Session resumption is essential
○ Many implementations

DoT: DNS over TLS
Highlight features:
Data integrity
Assurance of connected
party in strict mode

Can be discovered and
used in optimistic mode

TLS termination can be
done by external plugin
like Nginx

Certificate managment
overhead

[1] https://tools.ietf.org/html/rfc7858
[2] https://tools.ietf.org/html/rfc8310

DoH: DNS over HTTPS

UDP or Json blob in HTTP on port 443
DoH[1] pending RFC publication

Envisioned as Application to Resolver protocol
Can work for stub to Recursor
Will get through any firewall that passes HTTPS
Firefox, Chrome, and some applicaitons support
1.1.1.1, 8.8.8.8, 9.9.9.9

Uses UDP wire format
or simple JSON

Depends on HTTP2 for
good performance

Requires knowledge to
find servers

May allow migrating
DNS traffic to same
connection as HTTP
traffic

TLS1.3 has 0RTT

[1] https://datatracker.ietf.org/doc/draft-ietf-doh-dns-over-https/

https://datatracker.ietf.org/doc/draft-ietf-doh-dns-over-https/
https://datatracker.ietf.org/doc/draft-ietf-doh-dns-over-https/

DoQ: DNS over QUIC

Proposed work[1]

QUIC is datagram protocol with TLS
built in
Matches DNS properties well
Not ready for standardization

QUIC is raises
interesting options for
extending DNS

No implementations

[1] https://datatracker.ietf.org/doc/draft-huitema-quic-dnsoquic/?include_text=1

https://datatracker.ietf.org/doc/draft-huitema-quic-dnsoquic/?include_text=1

Performance implications
The world changes over time, what we hold as true may not stay the same due to advances.
Without looking at the facts we are doomed to failure
Change can be quick or slow but change will happen

Main factors

Connection multiplexing
● out-of-order answers
Distance

Connection Resumption

BAD:
Connection for one
query
Answers in same order
More distant server
selected

Good:
Long lived connection
Out-of-order answers
Closest server
Reduced complexity

Simplicity and reliability

DNS software is too complex

Route Hijacks: Secure connections
will detect and fail

Resolver to Authority: work in
progress

What do you want from upstream DNS?
• Assurance you are talking to the right one
• Fast and accurate answers
• Reliability

What’s missing

Discovery of “local” servers
Expression of resolver policies

Recursive Authority

Users accept DCHP
supplied DNS

Users configure
addresses

Applications have URL’s
for DNS

Getting around stupid
network setups (1.1.1.1),
only port 443

Confidence this will work

Protocol

Q/A
Open floor for any questions that you may have

