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What constitutes the delay on the Internet ?
Orders of magnitude

1 ns 1µs 1ms 1 s

processing

transmission

propagation queuing

processing 100 ns → 10µs

transmission 10µs → 100µs

propagation 100µs → 100ms

queuing up to seconds (bufferbloat)
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What constitutes the delay on the Internet ?
Impact of traffic level and routing changes
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Can we find back the hidden network states ?
Objective
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Same traffic pattern ?

We want to associate each delay observation to a particular network state
(network path, traffic level)



4/18

Can we find back the hidden network states ?
Objective

02 May 03 May 04 May 05 May 06 May 07 May 08 May 09 May 10 May
275.0

277.5

280.0

282.5

285.0

RT
T 

(m
s)

Same network path ?

Same traffic pattern ?

We want to associate each delay observation to a particular network state
(network path, traffic level)



5/18

Can we find back the hidden network states ?
Use cases

Detection of new
network states

A-posteriori analysis of
network events

Statistical analysis

Anomaly detection
Traffic engineering

Correlation with incidents
reports

Studying patterns
Summarizing

measurements
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Can we find back the hidden network states ?
Why not using traceroutes ?
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IP paths detected in the forward traceroute (one color per path).

I Traceroutes are more expensive and historical data is not always available;

I Forward and reverse traceroutes are needed for a complete view;

I They are blind to congestion and changes under the IP layer;



6/18

Can we find back the hidden network states ?
Why not using traceroutes ?

02 May 03 May 04 May 05 May 06 May 07 May 08 May 09 May 10 May
275.0

277.5

280.0

282.5

285.0

RT
T 

(m
s)

IP paths detected in the forward traceroute (one color per path).

I Traceroutes are more expensive and historical data is not always available;

I Forward and reverse traceroutes are needed for a complete view;

I They are blind to congestion and changes under the IP layer;



6/18

Can we find back the hidden network states ?
Why not using traceroutes ?

02 May 03 May 04 May 05 May 06 May 07 May 08 May 09 May 10 May
275.0

277.5

280.0

282.5

285.0

RT
T 

(m
s)

IP paths detected in the forward traceroute (one color per path).

I Traceroutes are more expensive and historical data is not always available;

I Forward and reverse traceroutes are needed for a complete view;

I They are blind to congestion and changes under the IP layer;



6/18

Can we find back the hidden network states ?
Why not using traceroutes ?

02 May 03 May 04 May 05 May 06 May 07 May 08 May 09 May 10 May
275.0

277.5

280.0

282.5

285.0

RT
T 

(m
s)

IP paths detected in the forward traceroute (one color per path).

I Traceroutes are more expensive and historical data is not always available;

I Forward and reverse traceroutes are needed for a complete view;

I They are blind to congestion and changes under the IP layer;



6/18

Can we find back the hidden network states ?
Why not using traceroutes ?

02 May 03 May 04 May 05 May 06 May 07 May 08 May 09 May 10 May
275.0

277.5

280.0

282.5

285.0

RT
T 

(m
s)

IP paths detected in the forward traceroute (one color per path).

I Traceroutes are more expensive and historical data is not always available;

I Forward and reverse traceroutes are needed for a complete view;

I They are blind to congestion and changes under the IP layer;



7/18

Can we find back the hidden network states ?
Unsupervised machine learning

“Clustering is the task of grouping a set of objects in such a way that objects in
the same group (called a cluster) are more similar (in some sense) to each other
than to those in other groups.”1

⇒ unsupervised learning, in contrast to classification.

1en.wikipedia.org/wiki/Cluster analysis

https://en.wikipedia.org/wiki/Cluster_analysis
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Can we find back the hidden network states ?
A Bayesian approach

Build a generative model
Infer model parameters

from observations
Assign observations

to hidden states

If we (loosely) know the model that generated the data, there are powerful
statistical methods to infer the model parameters from the observed data.
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Can we find back the hidden network states ?
Which generative model ?
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z : network state, y : observed delay, θ: delay distribution params., π: proportions
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Can we find back the hidden network states ?
Hidden Markov models
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Network states learned using an hidden Markov model (one color per state).

I Accounting for temporal dependencies gives a (visually) better clustering;
I We can observe that any given learned state maps (generally) to only one IP

path;
I We now have an information on the average duration of each state, and the

relationship between them;
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Applications
What is it good for ?

A single model for...

I Operations
I Detect congestion in upstream networks
I Detect (and react to) significant network changes
I Study the correlation of some learned states and NOC tickets frequency
I ...

I Analysis & Experiments
I A-posteriori study of network events
I Statistical analysis
I Parsimonious monitoring
I ...
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Applications
Detecting congestion in upstream networks
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= 0.938, 0.062

IP PATH C
= 275.9, 277.8
= 0.4, 1.2
= 0.789, 0.211

I We group learned states by IP path:
I 4 states are learned for IP path A.
I All IP path changes occur in a single AS (Cogent).

I Path A seems to experience periodic degradations in the transit AS.
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Applications
A-posteriori study of network events
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⇒ paths with a new state during the outage timeframe were potentially affected.



14/18

Applications
A-posteriori study of network events

06 Apr 07 Apr 08 Apr 09 Apr 10 Apr 11 Apr 12 Apr 13 Apr
50.0

100.0

150.0

200.0

RT
T 

(m
s)

RTT measurements between at-vie-as1120 and ua-iev-as24725 during DE-CIX April 2018 outage.

06 Apr 07 Apr 08 Apr 09 Apr 10 Apr 11 Apr 12 Apr 13 Apr
50.0

100.0

150.0

200.0

RT
T 

(m
s)

Network states learned.

⇒ paths with a new state during the outage timeframe were potentially affected.



14/18

Applications
A-posteriori study of network events

06 Apr 07 Apr 08 Apr 09 Apr 10 Apr 11 Apr 12 Apr 13 Apr
50.0

100.0

150.0

200.0

RT
T 

(m
s)

RTT measurements between at-vie-as1120 and ua-iev-as24725 during DE-CIX April 2018 outage.

06 Apr 07 Apr 08 Apr 09 Apr 10 Apr 11 Apr 12 Apr 13 Apr
50.0

100.0

150.0

200.0

RT
T 

(m
s)

Network states learned.

⇒ paths with a new state during the outage timeframe were potentially affected.



15/18

Applications
Summarizing measurements & statistical analysis

Raw measurement

HMM

I Delay observations
I Transition matrix

I #states × #states matrix
I Gives information about the

average duration of each state
and how states are connected

I Observations distributions
parameters

I ∝ #states
I Gives information about the

statistical distribution of the
delay in each states
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Applications
Summarizing measurements & statistical analysis
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Relationship between state duration and observations standard deviation on RIPE Atlas anchoring mesh

measurements.

⇒ We observe an inverse relationship between the average duration of a state
and its standard deviation (i.e. stable states last longer).
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Conclusion

I RTT observations depend on the underlying network state.

I Those states can be recovered using Hidden Markov models.

I Experiments shows that HMMs are a reasonable model for the RTT on the
Internet.

I In comparison to other models (such as neural networks), HMMs parameters
are easy to interpret (for a human being).
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Conclusion

I Current works:
I RTT timeseries analysis using Bayesian HMMs

I Parsimonious monitoring2 (reduction of up to 85% of the monitoring cost in
routing overlays)

I Future works:
I Online (real-time) model learning
I Learning of monitoring policies from scratch

Thanks for your attention!

2S. Vaton, O. Brun, M. Mouchet, P. Belzarena, I. Amigo, B. J. Prabhu, and T. Chonavel.
Joint minimization of monitoring cost and delay in overlay networks: optimal policies with a
Markovian approach. Journal of Network and Systems Management (Aug. 2018).
https://doi.org/10.1007/s10922-018-9464-1

https://doi.org/10.1007/s10922-018-9464-1


18/18

Conclusion

I Current works:
I RTT timeseries analysis using Bayesian HMMs

I Parsimonious monitoring2 (reduction of up to 85% of the monitoring cost in
routing overlays)

I Future works:
I Online (real-time) model learning
I Learning of monitoring policies from scratch

Thanks for your attention!

2S. Vaton, O. Brun, M. Mouchet, P. Belzarena, I. Amigo, B. J. Prabhu, and T. Chonavel.
Joint minimization of monitoring cost and delay in overlay networks: optimal policies with a
Markovian approach. Journal of Network and Systems Management (Aug. 2018).
https://doi.org/10.1007/s10922-018-9464-1

https://doi.org/10.1007/s10922-018-9464-1


18/18

Conclusion

I Current works:
I RTT timeseries analysis using Bayesian HMMs

I Parsimonious monitoring2 (reduction of up to 85% of the monitoring cost in
routing overlays)

I Future works:
I Online (real-time) model learning
I Learning of monitoring policies from scratch

Thanks for your attention!

2S. Vaton, O. Brun, M. Mouchet, P. Belzarena, I. Amigo, B. J. Prabhu, and T. Chonavel.
Joint minimization of monitoring cost and delay in overlay networks: optimal policies with a
Markovian approach. Journal of Network and Systems Management (Aug. 2018).
https://doi.org/10.1007/s10922-018-9464-1

https://doi.org/10.1007/s10922-018-9464-1


1/4

Appendix
Mixture models
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Mixture models
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Mixture models does not account for temporal dependencies, thus:

I They fail to correctly cluster delay observations with an high variance;

I If we use state transitions to detect network anomalies, they would generate
a lot of false alarms;
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IP/AS path correlation
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