8-

CLOUDFLARE

Three years of automating large scale
networks using Salt

Mircea Ulinic RIPE77
Cloudflare, London Amsterdam, October 2018

Mircea Ulinic

Network software engineer at Cloudflare
Member and maintainer at NAPALM Automation
SaltStack contributor of the year 2017

O'Reilly author

OpenConfig representative
https://mirceaulinic.net/

O mirceaulinic y@mirceaulinic

https://napalm-automation.net/
http://www.openconfig.net/
https://mirceaulinic.net/

Automation: definition

e The technique, method, or system of operating or controlling a process by highly
automatic means, as by electronic devices, reducing human intervention to a
minimum.

e The technique of making an apparatus, a process, or a system operate

automatically.

o Automatically: Having a self-acting or self-regulating mechanism

Common views on automation

In general (mis)understood as the equivalent of just configuration management.

In simpler terms, this boils down to: generate a configuration based on a
template = load the text blob on the network device.

... but what about the very long list of other manual tasks, e.g.:

- run the command to deploy the config

- same boring email to send to your providers

- Same boring notifications written manually (sometimes with tpyos)
- route leaks you learn about only minutes after it started

- other events you react way too late

Common views on automation

In general (mis)understood as the equivalent of just configuration management.

In simpler terms, this boils down to: generate a configuration based on a
template = load the text blob on the network device.

... but what about t

- runthe com
- same boring e
- same boring n
- route leaks
- other events

f other manual tasks, e.g.:

config

your providers

itten manually (sometimes with tpyos)
minutes after it started

late

This is not
automation

Common views on automation

In general (mis)understood as the equivalent of just configuration management.

In simpler terms, this boils down to: generate a configuration based on a
template = load the text blob on the network device.

... but what abo other manual tasks, e.g.:

- runt But they all onfig
SERIlde»- can be r providers

- samé automated Q. Mmanually (sometimes with tpyos)
- route DOt only minutes after it started

eact way too late

Frameworks used in networking before 2016

\ puppet

abs

ANSIBLE CHEF

... but they are not event-driven neither data-driven

Salt had the features to automate everything

i1

In SaltStack, speed isn’t a byproduct, it is a design goal. SaltStack was created as
an extremely fast, lightweight communication bus to provide the foundation for
a remote execution engine.

SaltStack now provides orchestration, configuration management, event
reactors, cloud provisioning, and more, all built around the SaltStack
high-speed communication bus.

"
... but no features for network automation before 2016

https://docs.saltstack.com/en/getstarted/speed.html

https://docs.saltstack.com/en/getstarted/speed.html

Salt Architecture

Device to be
managed

The name of

the Salt
process

LD

E3 Em - Em

https://docs.saltstack.com/en/latest/topics/topology/index.html

https://docs.saltstack.com/en/latest/topics/topology/index.html

Salt Architecture

Problem: you Dfnvgcnztc;ge
can't install &

Minions on
traditional
network devices! The name of

E3 Em - Em

https://docs.saltstack.com/en/latest/topics/topology/index.html

the Salt
process

LD

https://docs.saltstack.com/en/latest/topics/topology/index.html

Salt Architecture: Proxy Minions

Solution: Proxy Minions

They behave like regular Minions,

but can manage network devices, HTTP
remotely. r—
SSH
|
Proxy
Minion ini NETCONF
|

network network network
device device device

https://docs.saltstack.com/en/latest/topics/topology/index.html

https://docs.saltstack.com/en/latest/topics/topology/index.html

Vendor-agnostic APl: NAPALM

Network Automation and Programmability Abstraction Layer with Multivendor support

Iy
Juniper ~_ ff.— CIsco.

@ CUMULUS) paloalto
/ NAP ALM\ NETWORKS

kk] |
MIKror s () VYATTA.

A Brocade® Company

https://github.com/napalm-automation

12

https://github.com/napalm-automation

NAPALM integrated in Salt: Carbon (2016.11)

NETWORK AUTOMATION: NAPALM

Beginning with 2016.11.0, network automation is inclued by default in the core of Salt. It is based on the NAPALM library and provides facilities to manage
the configuration and retrieve data from network devices running widely used operating systems such as: JunOS, I0S-XR, eOS, I0S, NX-OS etc. - see the

complete list of supported devices.
The connection is established via the NAPALM proxy .
In the current release, the following modules were included:

e NAPALM grains - Select network devices based on their characteristics
e NET execution module - Networking basic features
e NTP execution module

* BGP execution module

* Routes execution module

e SNMP execution module

e Users execution module

* Probes execution module

e NTP peers management state

e SNMP configuration management state

e Users management state

https://docs.saltstack.com/en/develop/topics/releases/2016.11.0.html 13

https://docs.saltstack.com/en/develop/topics/releases/2016.11.0.html#network-automation-napalm

2016: Vendor-agnostic automation is here!

$ sudo salt junos-router net.arp

junos-router:

interface:
ae2.100
ip:
10.0.0.1
mac:

84:B5:9C:CD:09:73

$ sudo salt iosxr-router net.arp

iosxr-router:

interface:
Bundle-Ether4
ip:
10.0.0.2
mac:

00:25:90:20:46:B5

14

2016: Vendor-agnostic config management

$ sudo salt devicel state.sls ntp $ sudo salt device2 state.sls ntp
devicel: device2:
ID: Manage the NTP config ID: Manage the NTP config
Function: netconfig.managed Function: netconfig.managed
Result: True Result: True
Comment: Configuration changed! Comment: Configuration changed!
Started: 10:53:25.624396 Started: 11:02:39.162423
Duration: 3494.153 ms Duration: 3478.683 ms
Changes: Changes:
diff: diff
[edit system ntp] soo
- peer 172.17.17.2; -
[edit system ntp] @@ -1,4 +1,10 @@
+ server 10.10.10.1; +ntp
+ server 10.10.10.2; + server 10.10.10.1

- server 172.17.17.1; + server 10.10.10.2

NAPALM integrated in Salt: Nitrogen (2017.7)

Introduced in 2016.11, the modules for cross-vendor network automation have been improved, enhanced and widenened in scope:

¢ Manage network devices like servers: the NAPALM modules have been transformed so they can run in both proxy and regular minions. That means, if
the operating system allows, the salt-minion package can be installed directly on the network gear. Examples of such devices (also covered by NAPALM)
include: Arista, Cumulus, Cisco |OS-XR or Cisco Nexus.

¢ Not always alive: in certain less dynamic environments, maintaining the remote connection permanently open with the network device is not always
beneficial. In those particular cases, the user can select to initialize the connection only when needed, by specifying the field always_alive: false in
the proxy configuration orusingthe proxy_always_alive option.

¢ Proxy keepalive: due to external factors, the connection with the remote device can be dropped, e.g.: packet loss, idle time (no commands issued within
a couple of minutes or seconds), or simply the device decides to kill the process. In Nitrogen we have introduced the functionality to re-establish the
connection. One can disable this feature through the proxy_keep_alive option and adjust the polling frequency speciying a custom value for

proxy_keep_alive_interval ,in minutes.

New modules:

e Netconfig state - Manage the configuration of network devices using arbitrary templates and the Salt-specific advanced templating methodologies.

e Network ACL execution module - Generate and load ACL (firewall) configuration on network devices.

¢ Network ACL state - Manage the firewall configuration. It only requires writing the pillar structure correctly!

e NAPALM YANG execution module - Parse, generate and load native device configuration in a standard way, using the OpenConfig/IETF models. This
module cotains also helpers for the states.

e NET finder - Runner to find details easily and fast. It's smart enough to know what you are looking for. It will search in the details of the network
interfaces, IP addresses, MAC address tables, ARP tables and LLDP neighbors.

e BGP finder - Runner to search BGP neighbors details.

e NAPALM syslog - Engine to import events from the napalm-logs library into the Salt event bus. The events are based on the syslog messages from the

network devices and structured following the OpenConfig/IETF YANG models.
https://docs.saltstack.com/en/develop/topics/releases/nitrogen.html 16

https://docs.saltstack.com/en/develop/topics/releases/nitrogen.html#napalm

2017: event-driven network automation

}(}) Salt BOT Wed 4:52 PM
(l" edge01.jnb01: 2001:43f8:1f0::121 (AS32437 - CYBERTEK-): Increased the prefix limit to 500:

[edit protocols bgp group 6-PUBLIC-ANYCAST-PEERS neighbor 2001:43f8:1f0::121 family inet6 unicast prefix-limit]
- maximum 100;
+ maximum 500;

17

2017: event-driven network automation

@ Network / NET-9954
edge01.otp01: 80.97.248.1 - MD5 incorrect

Edit [J)Comment = Assign More v~ Triage Defer Close =
Details People

Type: O Bug Status: CEZERIES (View Workflow) Assignee: n Unassigned

Priority: ¥ Normal Resolution: Unresolved Assign to me

Affects Version/s: None Fix Version/s: None Reporter: O salt-netops

Component/s: None Votes: 0 Vote for this issue

Labels: Norie Watchers: 1 Start watching this issue
Description Dates

edge01.otp01: 80.97.248.1 - MD5 incorrect. Action required
Created: 4 hours ago

3 Export ~

18

2017: automatic emails

Dear GTT,

We have received some alerts from our monitoring system. We have captured some MTRs to show the packet loss experienced:

Source IP: x.x.x.x (Oslo, No), circuit ID: GTT:GI/IP Transit/XXX
Destination IP: z.z.z.z (Ashburn, VA), circuit ID: GTT:GI/IP Transit/ZZZ

MTR Result collected at: Thu, 16 Aug 2018 15:16:06 UTC

HOST: re0.edge01.0sl01 Loss% Snt Last Avg Best Wrst StDev
1. XX XX 0.0% 10 0.7 6.1 0.5 319 11.5

2.y.y.y.y 60.0% 10 229.3230.0226.6234.8 3.4

3.zz2.22 30.0% 10 136.6141.6135.2149.2 5.8

Source IP: x.x.x.x (Tokyo, JP), circuit ID: GTT:GI/IP Transit/XXX
Destination IP: z.z.z.z (Frankfurt, DE), circuit ID: GTT:GI/IP Transit/ZZZ

MTR Result collected at: Thu, 16 Aug 2018 15:15:33 UTC

HOST: re0.edge01.nrt02 Loss% Snt Last Avg Best Wrst StDev
1. XXXX 0.0% 10 4.1 81 1.3 30.5 9.9
2.y.y.yy 20.0% 10 201.4233.0 188.4 283.5 35.8

3.z.z.22 40.0% 10 247.0270.3 247.0 283.1 18.1

NAPALM integrated in Salt: Fluorine (2018.11)

NAPALM
COMMIT AT AND COMMIT CONFIRMED

Beginning with this release, NAPALM users are able to execute scheduled commits (broadly known as "commit at") and "commit confirmed" (revert the
configuration change unless the user confirms by running another command). These features are available viathe commit_in, commit_at, revert_in,or

revert_at arguments for the net.load_config and net.load_template executionfunctions, or netconfig.managed .

The counterpart execution functions net.confirm_commit ,or net.cancel_commit ,as well asthe State functions netconfig.commit_cancelled,or

netconfig.commit_confirmed can be used to confirm or cancel a commit.

Please note that the commit confirmed and commit cancelled functionalities are available for any platform whether the network devices supports the

features natively or not. However, be cautious and make sure you read and understand the caveats before using them in production.

MULTIPLE TEMPLATES RENDERED SIMULTANEOUSLY

The template_name argument of the net.load_template Executionand netconfig.managed State function now supports a list of templates. This is
particularly useful when a very large Jinja template is split into multiple smaller and easier to read templates that can eventually be reused in other States.
For example, the following syntax is not correct to manage the configuration of NTP and BGP simultaneously, using two different templates and changing
the device configuration through one single commit:

YAML

manage_bgp_and_ntp:
netconfig.managed:
- template_name:
- salt://templates/bgp.jinja
- salt://templates/ntp.jinja
- context:
bpg: {{ pillar.bgp }}
ntp: {{ pillar.ntp }}

https://docs.saltstack.com/en/develop/topics/releases/fluorine.html 20

https://docs.saltstack.com/en/develop/topics/releases/nitrogen.html#napalm

NAPALM integrated in Salt: Fluorine (2018.11)

CONFIGURATION REPLACE FEATURES

To replace various configuration chunks, you can use the new net.replace_pattern execution function, or the netconfig.replace_pattern State function.
For example, if you want to update your configuration and rename a BGP policy referenced in many places, you can do so by running:

salt 'x' net.replae_pattern OLD-POLICY-CONFIG new-policy-config

Similarly, you can also replace entire configuration blocks using the net.blockreplace function.

CONFIGURATION SAVE FEATURES

The net.save_config function can be used to save the configuration of the managed device into a file. For the State subsystem, the netconfig.saved
function has been added which provides a complete list of facilities when managing the target file where the configuration of the network device can be
saved.

For example, backup the running configuration of each device under its own directory tree:

YAML

/var/backups/{{ opts.id }}/running.cfg:
netconfig.saved:
— source: running
- makedirs: true

https://docs.saltstack.com/en/develop/topics/releases/fluorine.html

21

https://docs.saltstack.com/en/develop/topics/releases/nitrogen.html#napalm

NAPALM integrated in Salt: Fluorine (2018.11)

All the new network automation modules mentioned above are directly exposed to the NAPALM users, without requiring any architectural changes, just
eventually install some requirements:

JUNOS
The features from the existing junos Execution Module are available via the following functions:
e napalm. junos_cli : Execute a CLI command and return the output as text or Python dictionary.

e napalm. junos_rpc : Execute an RPC request on the remote Junos device, and return the result as a Python dictionary, easy to digest and
manipulate.

e napalm.junos_install_os : Install the given image on the device.
e napalm.junos_facts : The complete list of Junos facts collected by the junos-eznc underlying library.

Note

To be able to use these features, you muse ensure that you meet the requirements for the junos module. As junos-eznc is already a dependency of NAPALM, you
will only have to install jxmlease .

Usage examples:

salt 'x' napalm.junos_cli 'show arp' format=xml
salt 'x' napalm.junos_rpc get-interface-information

https://docs.saltstack.com/en/develop/topics/releases/fluorine.html 22

https://docs.saltstack.com/en/develop/topics/releases/nitrogen.html#napalm

NAPALM integrated in Salt: Fluorine (2018.11)

ARISTA PYEAPI

For various operations and various extension modules, the following features have been added to gate functionality from the pyeapi module:

e napalm.pyeapi_run_commands : Execute a list of commands on the Arista switch, via the pyeapi library.
e napalm.pyeapi_config : Configure the Arista switch with the specified commands, via the pyeapi Python library. Similarly to
napalm.netmiko_config,you can use both local and remote files, with or without templating.

Usage examples:

salt 'x' napalm.pyeapi_run_commands 'show version' 'show interfaces'
salt 'x' napalm.pyeapi_config config_file=salt://path/to/template.jinja

CISCO NX-API

In the exact same way as above, the user has absolute control by using the following primitives to manage Cisco Nexus switches via the NX-API:
e napalm.nxos_api_show : Execute one or more show (non-configuration) commands, and return the output as plain text or Python dictionary.
e napalm.nxos_api_rpc : Execute arbitrary RPC requests via the Nexus API.

e napalm.nxos_api_config : Configures the Nexus switch with the specified commands, via the NX-API. The commands can be loaded from the

command line, or a local or remote file, eventually rendered using the templating engine of choice (default: jinja).

Usage examples:

salt 'x' napalm.nxos_api_show 'show bgp sessions' 'show processes' raw_text=False

Wﬂ

https://docs.saltstack.com/en/develop/topics/releases/fluorine.html

23

https://docs.saltstack.com/en/develop/topics/releases/nitrogen.html#napalm

NAPALM integrated in Salt: Fluorine (2018.11)

CISCOCONFPARSE

The following list of function may be handy when manipulating Cisco 10S or Junos style configurations:

* napalm.config_filter_lines : Return alist of detailed matches, for the configuration blocks (parent-child relationship) whose parent and children
respect the regular expressions provided.

* napalm.config_find_lines : Return the configuration lines that match the regular expression provided.

e napalm.config_lines_w_child : Return the configuration lines that match a regular expression, having child lines matching the child regular
expression.

e napalm.config_lines_wo_child : Return the configuration lines that match a regular expression, that don't have child lines matching the child

regular expression.

Note

These functions require the ciscoconfparse Python library to be installed.

Usage example (find interfaces that are administratively shut down):

salt 'x' napalm.config_lines_w_child 'interface' 'shutdown'

https://docs.saltstack.com/en/develop/topics/releases/fluorine.html

24

https://docs.saltstack.com/en/develop/topics/releases/nitrogen.html#napalm

Salt for network automation: not onl|

NETBOX

Added in the previous release, 2018.3.0, the capabilities of the netbox Execution Module have been extended, with a much longer list of available features:

netbox.create_circuit

netbox.create_circuit_provider
netbox.create_circuit_termination
netbox.create_circuit_type

netbox.create_device

netbox.create_device_role
netbox.create_device_type
netbox.create_interface
netbox.create_interface_connection
netbox.create_inventory_item
netbox.create_ipaddress
netbox.create_manufacturer

netbox.create_platform
netbox.create_site

netbox.delete_interface
netbox.delete_inventory_item
netbox.delete_ipaddress
netbox.get_circuit_provider

netbox.get_interfaces
netbox.get_ipaddresses

netbox.make_interface_child
netbox.make_interface_lag

netbox.openconfig_interfaces

netbox.openconfig_lacp

Besides this Execution Module, Salt users can load data directly from NetBox into the device Pillar, via the netbox External Pillar module.

netbox.update_device

netbox.update_interface

.

.

"
.
.
.
.

First framework .

with official
OpenConfig
integrations

0
.

.
. e " m momm®

.
.
.

y NAPALM

https://docs.saltstack.com/en/develop/topics/releases/fluorine.html

25

https://docs.saltstack.com/en/develop/topics/releases/nitrogen.html#napalm

Salt for network automation: not only NAPALM

NETMIKO

Netmiko, the multi-vendor library to simplify Paramiko SSH connections to network devices, is now officially integrated into Salt. The network community
canuse it viathe netmiko Proxy Module or directly from any Salt Minions, passing the connection credentials - see the documentation for the netmiko

Execution Module.

ARISTA

Arista switches can now be managed running under the pyeapi Proxy Module, and execute RPC requests via the pyeapi Execution Module.

CISCO NEXUS

While support for SSH-based operations has been added in the release codename Carbon (2016.11), the new nxos_api Proxy Module and nxos_api allow

management of Cisco Nexus switches via the NX-API.
It is important to note that these modules don't have third party dependencies, therefore they can be used straight away from any Salt Minion. This also

means that the user may be able to install the regular Salt Minion on the Nexus switch directly and manage the network devices like a regular server.

GENERAL-PURPOSE MODULES

The new ciscoconfparse Execution Module can be used for basic configuration parsing, audit or validation for a variety of network platforms having Cisco

10S style configuration (one space indentation), as well as brace-delimited configuration style.

The iosconfig can be used for various configuration manipulation for Cisco 10S style configuration, such as: configuration cleanup,

tree representation of the config, etc.

https://docs.saltstack.com/en/develop/topics/releases/fluorine.html

26

https://docs.saltstack.com/en/develop/topics/releases/nitrogen.html#napalm

2018: more automatic emails

Dear XXX,
This is an automated email from Cloudflare, AS 13335.

We have detected our BGP sessions with the following IPs in the following locations have become idle due to breaching the maximum
prefix count set.

- IP: a.b.c.d - Newark, NJ - Number of IPs received when sessions went down: 8001.

- IP: x.y.z.t - Paris, FR - Number of IPs received when sessions went down: 12001.
Please check to ensure the prefixes you are announcing and are correct. Please also ensure your PeeringDB entry is up-to-date.
Thank you,

Cloudflare

https://www.peeringdb.com/net/4224

27

https://www.peeringdb.com/net/4224

Who's Salty today
Linked [T}]
‘ linode

é CLOUDFLARE
/A
COMCAST

Bloomberg

SAP4
"‘ Adobe

f.) DigitalOcean

e

28

Network Automation
at Scale: the book

Free download:
http://www.oreilly.com/webops-perf/free/network-aut

omation-at-scale.csp

OREILLY"

Network
Automation
at Scale

'

Mircea Ulinic & Seth House

http://www.oreilly.com/webops-perf/free/network-automation-at-scale.csp
http://www.oreilly.com/webops-perf/free/network-automation-at-scale.csp

Everything is open sourced GitHub

o Salt
https://github.com/saltstack/salt

e NAPALM Automation:
https://github.com/napalm-automation

30

https://github.com/saltstack/salt
https://github.com/napalm-automation

Need help/advice? “ slack

Join https://networktocode.slack.com/
rooms: #saltstack #napalm

New: https://saltstackcommunity.slack.com
rooms: #networks

Over 600 members

31

http://networktocode.herokuapp.com/
https://saltstackcommunity.slack.com/

LLLLLLLLLLL

Questions

22

CLOUDFLARE’

mircea@cloudflare.com

33

mailto:mircea@cloudflare.com

