

Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists

Oliver Gasser

Technical University of Munich

RIPE 77, Amsterdam

Joint work

Internet measurements

Active Internet measurements

- Important tool to understand specific networks
 - Which IP addresses run an HTTPS web server in the Internet?
 - How securely configured are IoT devices in a company network?
 - Are my DNS servers vulnerable to amplification attacks?
- Used by researchers, security companies,...

Internet measurements

Active Internet measurements

- Important tool to understand specific networks
 - Which IP addresses run an HTTPS web server in the Internet?
 - How securely configured are IoT devices in a company network?
 - Are my DNS servers vulnerable to amplification attacks?
- Used by researchers, security companies,...but also bad actors

Internet measurements

Active Internet measurements

- Important tool to understand specific networks
 - Which IP addresses run an HTTPS web server in the Internet?
 - How securely configured are IoT devices in a company network?
 - Are my DNS servers vulnerable to amplification attacks?
- Used by researchers, security companies,...but also bad actors

Why is this research relevant for operators?

- Learn measurements techniques used in IPv6 vs. in IPv4
- Understand how devices can be discovered in your network
- Take action by conducting measurements yourself

Differences in IPv4 and IPv6 measurement approaches

- IPv4
 - Brute-force scan complete Internet in a few hours (e.g. ZMap)
- IPv6
 - Address space too expansive for brute force scanning
 - Assemble target list of IPv6 addresses for scanning \rightarrow IPv6 hitlist

IPv6 hitlist

Assembling an IPv6 hitlist

- Leverage DNS to gather IPv6 addresses
- Exploit structural properties to learn new addresses
- Use crowdsourcing to get client addresses

IPv6 hitlist

Assembling an IPv6 hitlist

- Leverage DNS to gather IPv6 addresses
- Exploit structural properties to learn new addresses
- Use crowdsourcing to get client addresses

Challenges

- 1. Clusters in hitlist sources
- 2. Aliased prefixes
- 3. Finding reachable addresses

Where can we learn potential IPv6 addresses?

Where can we learn potential IPv6 addresses?

- Domain lists: zonefiles, toplists, blacklists
- Rapid7 ANY DNS
- Domains extracted from Certificate Transparency
- Bitcoin node addresses
- RIPE Atlas: traceroutes, ipmap
- Scamper: traceroute to all assembled addresses

Figure 1: Cumulative runup of IPv6 addresses.

6

Oliver Gasser — Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists

Hitlist sources

Where can we learn potential IPv6 addresses?

- Domain lists: zonefiles, toplists, blacklists
- Rapid7 ANY DNS
- Domains extracted from Certificate Transparency
- Bitcoin node addresses
- RIPE Atlas: traceroutes, ipmap
- Scamper: traceroute to all as sembled addresses

Observation

Many addresses from domain lists, CT, and scamper

6

How diverse are the addresses from different sources?

How diverse are the addresses from different sources?

Figure 2: AS distribution for hitlist sources.

How diverse are the addresses from different sources?

Figure 2: AS distribution for hitlist sources.

Autonomous System distribution

• Unbalanced (CT, domain lists) vs. balanced (RIPE Atlas)

Oliver Gasser — Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists

How much of the announced address space do we cover?

How much of the announced address space do we cover?

Figure 3: IPv6 prefixes with number of hitlist addresses per prefix.

How much of the announced address space do we cover?

Figure 3: IPv6 prefixes with number of hitlist addresses per prefix.

BGP prefix distribution

- Good coverage of BGP prefixes: 25.5 k of 51.2 k
- Some prefixes with many addresses

Oliver Gasser — Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists

Key take-aways for network operations

- 1. IPv6 address space too vast to conduct bruteforce measurements
- 2. Your addresses can be gathered from many different publicly available sources (e.g. DNS, CT)
- About 50 % of announced prefixes are covered in our IPv6 hitlist

Address entropy clustering

ПШ

Addressing schemes

- Question: How similar are addressing schemes in our hitlist?
- Approach: Group addresses to find similar address schemes

Address entropy clustering

ТШ

Addressing schemes

- Question: How similar are addressing schemes in our hitlist?
- Approach: Group addresses to find similar address schemes

Figure 4: Addressing schemes.

Address entropy clustering

ТШТ

Addressing schemes

- Question: How similar are addressing schemes in our hitlist?
- Approach: Group addresses to find similar address schemes

Figure 4: Addressing schemes.

- Only few addressing schemes
- Low-bit addresses (e.g. ::1), privacy extensions, and EUI-64 mapped MAC addresses clearly visible

Oliver Gasser — Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists 10

Key take-aways for network operations

- 1. Most networks use one of a handful of addressing schemes
- 2. Good: Industry best practices are followed
- Bad: Addressing schemes might uncover "hidden" hosts

Detecting aliased prefixes Aliases

- ПΠ
- Alias: Multiple addresses belonging to the same host
- Aliased prefix: Complete prefix bound to the same host
- Bias: As some hosts are overrepresented, aliased prefixes introduce bias in the hitlist

Detecting aliased prefixes Aliases

- ТШ
- Alias: Multiple addresses belonging to the same host
- Aliased prefix: Complete prefix bound to the same host
- Bias: As some hosts are overrepresented, aliased prefixes introduce bias in the hitlist

Detecting aliased prefixes using pseudo-random probing

2001:0db8:0407:8000::/64

2001:0db8:0407:8000:0151:2900:77e9:03a8

2001:0db8:0407:8000:<u>f</u>693:2443:915e:1d2e

Table 1: IPv6 fan-out for multi-level aliased prefix detection.

Detecting aliased prefixes

Figure 5: All prefixes covered by hitlist.

- 55.1 M raw IPv6 addresses in hitlist
- Few prefixes are aliased (e.g. Amazon, see right figure)
- 25.7 M IPv6 addresses in aliased prefixes (46.6 %)
- Validation using fingerprinting (iTTL, TCP opts, TCP TS)

Oliver Gasser — Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists 13

Key take-aways for network operations

- 1. Aliased prefixes can introduce bias in IPv6 measurements
- 2. Can be detected with pseudo-random probing
- 3. Using aliasing to hide your prefixes and hosts is not very effective

Cross protocol responsiveness

- If address responds on protocol X, how likely is it to respond on protocol Y?
- Goal: Identify relevant addresses for specific measurements

Address responsiveness

Figure 7: Likeliness to respond on protocol Y, if responding to protocol X.

Address responsiveness

Figure 7: Likeliness to respond on protocol Y, if responding to protocol X.

- If responsive to one of the probes \rightarrow at least 89% chance it will answer to ICMPv6
- Web protocols: QUIC \rightarrow HTTPS and HTTP, HTTPS \rightarrow HTTP; but not the other way around

Oliver Gasser — Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists 16

Key take-aways for network operations

- 1. Knowing responsiveness on one service might leak information about other services
- 2. Horizontal port scanning on all devices is not necessary
- 3. Attackers might pick one port (e.g. TCP/80) and then continue with only responsive hosts

Techniques to learn new addresses

- Entropy/IP: Generate new addresses by leveraging entropy of seed addresses
 - Similar approach to grouping addresses based on their structure as shown earlier
 - Presented at RIPE74 in Budapest by Paweł Foremski

Techniques to learn new addresses

- Entropy/IP: Generate new addresses by leveraging entropy of seed addresses
 - Similar approach to grouping addresses based on their structure as shown earlier
 - Presented at RIPE74 in Budapest by Paweł Foremski
- 6Gen: Generate new addresses in dense address regions
 - If we see addresses
 - 2001:0db8:0407:8000::3
 - 2001:0db8:0407:8000::**4**
 - 2001:0db8:0407:8000::5
 - 2001:0db8:0407:8000::8
 - 2001:0db8:0407:8000::9
 - Likely other valid addresses
 - 2001:0db8:0407:8000::6
 - 2001:0db8:0407:8000::7

Oliver Gasser — Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists 18

How well do Entropy/IP and 6Gen perform?

- Input: All previously found IPv6 addresses
- Generation: 118 M and 129 M, only 675 k overlapping
- Responsiveness: 278 k and 489 k
- Magnitude higher response rate for overlapping addresses

How well do Entropy/IP and 6Gen perform?

- Input: All previously found IPv6 addresses
- Generation: 118 M and 129 M, only 675 k overlapping
- Responsiveness: 278 k and 489 k
- Magnitude higher response rate for overlapping addresses

Table 2: Top 5 responsive protocol combinations for 6Gen and Entropy/IP.

ICMP	TCP/80	TCP/443	UDP/53	UDP/443	6Gen	Entropy/IP
~	×	×	×	×	66.8%	41.1%
\checkmark	1	\checkmark	×	×	9.2%	12.3%
×	×	×	\checkmark	×	7.3%	23.1 %
\checkmark	\checkmark	×	×	×	4.9%	3.4%
1	\checkmark	\checkmark	×	\checkmark	3.2%	6.1 %

How well do Entropy/IP and 6Gen perform?

- Input: All previously found IPv6 addresses
- Generation: 118 M and 129 M, only 675 k overlapping
- Responsiveness: 278 k and 489 k
- Magnitude higher response rate for overlapping addresses

Table 2: Top 5 responsive protocol combinations for 6Gen and Entropy/IP.

ICMP	TCP/80	TCP/443	UDP/53	UDP/443	6Gen	Entropy/IP
~	×	×	×	×	66.8%	41.1%
\checkmark	1	\checkmark	×	×	9.2%	12.3%
×	×	×	\checkmark	×	7.3%	23.1 %
\checkmark	\checkmark	×	×	×	4.9%	3.4%
\checkmark	1	\checkmark	×	\checkmark	3.2%	6.1 %

Different host populations

Oliver Gasser — Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists 19

Key take-aways for network operations

- 1. Address learning uncovers previously unknown addresses
- 2. Techniques provide complementary address sets
- 3. Hiding in the expansive IPv6 address space might be more difficult

Conclusion

- IPv6 Internet too vast to conduct brute-force measurements
- But you might be less "hidden" in IPv6 than you'd have thought
- Addressing schemes might uncover "hidden" hosts
- Responsiveness of one service might leak information about other services

Conclusion

- IPv6 Internet too vast to conduct brute-force measurements
- But you might be less "hidden" in IPv6 than you'd have thought
- Addressing schemes might uncover "hidden" hosts
- Responsiveness of one service might leak information about other services

ipv6hitlist.github.io

Conclusion

- IPv6 Internet too vast to conduct brute-force measurements
- But you might be less "hidden" in IPv6 than you'd have thought
- Addressing schemes might uncover "hidden" hosts
- Responsiveness of one service might leak information about other services

ipv6hitlist.github.io

Oliver Gasser <gasser@net.in.tum.de> https://www.net.in.tum.de/~gasser/