Cleaning up the RIPE-NONAUTH dataset
Policy Proposal 2018-06

Erik Bais (A2B Internet)
Martin Levy (Cloudflare)

Job Snijders (NTT Communications)z%/@
\ me



Current situation: post-NWI-5 world

Fantastic work — a large loophole is closed
No new out-of-region objects can be created in the RIPE IRR

https://www.ripe.net/manage-ips-and-asns/db/impact-analysis-for-
nwi-5-implementation



https://www.ripe.net/manage-ips-and-asns/db/impact-analysis-for-nwi-5-implementation

Current situation: post-NWI-5 world

* The NWI-5 project split the RIPE IRR into two datasets

* RIPE (exclusively contains data that was created with the consent of the
resource holder)

* RIPE-NONAUTH (contains data for which we can’t know if consent was given,
pile of garbage

* We (as community) purposefully left cleaning up RIPE-ENONAUTH as
out of scope for NWI-5 to increase the chances of NWI-5’s successful
execution



How do we clean up RIPE-NONAUTH?

* We can leverage a different data source to scrub the RIPE-NONAUTH
dataset: RPKI

* RPKI ROAs as published by the five RIRs are always created with the
full consent of the resource owner

e Data in RIPE-NONAUTH is unvalidated
the resource owner may not even be
aware the objects exist




Proposal: Let RPKI “drown out™ conflicting IRR

* RPKI can be used for BGP Origin Validation — but also for other things!

* What about applying the RFC 6811 “Origin Validation procedure” to
IRR data?

* Treat IRR data objects as if they are BGP announcements?



Example:

route: 129.250.15.0/24

origin: AS60068

descr: AS60068 route object

descr: this is a test of hijack possibilities

with current state of RIPE/RADB security
setup - this records covers IP address used for
rr.ntt.net service

descr: please note this is just a demonstrative object,
with no real harmful intention

mnt-by: DATACAMP-MNT

created: 2018-02-10T16:57:072

last-modified: 2018-09-04T19:07:327Z
source: RIPE-NONAUTH



hanna:~ job$ whois -h whois.bgpmon.net 129.250.15.0/24
This is the BGPmon.net whois Service

You can use this whois gateway to retrieve information
about an IP adress or prefix

We support both IPv4 and IPv6 address.

For more information visit:
https://portal.bgpmon.net/bgpmonapi.php

o0 o°® 00 00 o0 o0 o0

Prefix: 129.250.0.0/16
Prefix description: NTT Communications backbone
Country code: UsS

Origin AS: 2914

Origin AS Name: NTT America, Inc.

RPKI status: ROA validation successful
First seen: 2011-10-19

Last seen: 2018-10-14

Seen by #peers: 87



Understanding what transpired

* If a network deploys RPKI based BGP Origin Validation with a “invalid
== reject” routing policy

* an announcement where 129.250.15.0/24 is originated by AS60068
would be rejected

e Because 129.250.15.0/24 conflicts with the RPKI ROA

* The IRR object describes a state of the network which cannot exist — it
is in conflict with the published routing intentions of NTT

* Everyone generating a BGP prefix list filter for AS 60068 now has a
hole punched for 129.250.15.0/24

* NTT has no method to delete the 129.250.15.0/24AS60068 object!



Process

1. A RIPE NCC script fetches all RPKI ROAs

2. If a ROA covers (part of a) route object in RIPE-ENONAUTH, check if
any of the ROA origin ASNs matches with the origin ASN listed in
RIPE-NONAUTH

3. Ifyes : don’t delete — don’t do anything
If no ROA : don’t delete — don’t do anything
If invalid . delete the RIPE-NONAUTH IRR route object

No need to integrate this in the WHOIS software, can be separate script
that runs every few minutes.



result = NOT DELETE;

// Iterate through all the Covering entries in the local VRP
// database, pfx validate table.

entry = next lookup result(pfx validate table, route prefix);

while (entry != NULL) {

prefix exists = TRUE;

if (route prefix length <= entry->max_length) {

if (route origin as != NONE
&& entry->origin as != 0
&& route origin_as == entry->origin as) {

return (result);

}

entry = next lookup result(pfx validate table, input.prefix);

// If one or more VRP entries Covered the route prefix, but
// none Matched, return "Invalid" validation state.
if (prefix _exists == TRUE) {

result = DELETE IRR OBJECT;

return (result);



Other industry developments

e Use RPKI ROAs for provisioning BGP prefix-filters
* Extending IRRd so that when IRR information is in direct conflict with
a RPKI ROA — the conflicting information is suppressed (Github)

e whois.radb.net
e rr.ntt.net
e ...others?

* Come to Open Source working group for more news about IRRd v4!



https://seclists.org/nanog/2018/Jul/265
https://github.com/irrdnet/irrd4/issues/3

RPKI suppressing conflicting IRR advantages

*|Industry-wide common method to get rid of
stale proxy route objects — by creating a ROA you
hide old garbage in IRRs

* By creating a ROA — you will significantly
decrease the chances of people being able to
use IRR to hijack your resource



Questions / Comments?

* PDP process takes place in Routing WG




