

George Nomikos

gnomikos@ics.forth.gr

Uncovering Remote Peering Interconnections at IXPs

To appear in IMC, Boston, 2018

V. Kotronis, P. Sermpezis, P. Gigis, L. Manassakis, C. Dietzel, S. Konstantaras,

X. Dimitropoulos, V. Giotsas

Benefits of Internet eXchange Points*

- Keeps local Internet traffic within a local infrastructure, and reduces costs associated with traffic exchange between networks.
- Builds local Internet community and develops human technical capacity better net management skills and routing
- Improves the quality of Internet services and drive demand in by reducing delay and improving end-user experience
- Convenient hub for attracting hosting key Internet infrastructures within countries content is key and confidence builds in local infra when delivery is consistent and reliable
- Catalyst for overall Internet development

Interne

Pressure for Diverse Peering

- Volume of traffic is constantly increasing
 CDNs, Cloud, IOT
- Pressure on ASes for denser and more diverse peering connectivity
- A fundamental shift in peering practices is required

Peer Remotely?

- Connect to IXP peering fabric without collocating a router at an IXP facility
 - Cut equipment, deployment, operational costs
 - Connect to multiple IXPs through a single router

Yes, but...

Remote Peering cancels out many IXP benefits

- 1. Introduces third parties
 - Opaqueness
 - Harder to monitor and debug
- 2. Reduces resilience and reliability
- 3. Increases latency

Remote Peering over IXPs

- Remote Peering is when a network peers at an IXP:
- 1. without having physical presence in the IXP's infrastructure
- 2. and/or through resellers

"What goes on beyond that cable?"

Transparency

>Identify remote/local peers

For both IXP operators and customers point of view

Features of Remote Peering

Study if/how remote peers' characteristics can differentiate from local peers

State-of-the-art

RTT-based Remote Peering Inference

Detect remote peers based on RTT measurements

 Execute ping from Looking Glass inside the IXP to the peering interfaces

RTTs > 10 ms indicate remote peers Conservative threshold for local / regional IXPs

Castro, Ignacio, et al. "Remote peering: More peering without internet flattening." ACM CoNEXT 2014.

What Ground-Truth Says:

- Regional IXPs: 40% of remote peers have < 10ms RTT
- 18% of remote peers have < 1ms RTT</p>

- Wide-area IXPs: 87% of facility pairs have >10ms median RTT (NET-IX)
- -14% of IXPs are wide-area

Our Methodology - How it works

• We propose a 'first-principles' approach to infer remote and local peers

- Design aspects:
 - 1. Port Capacity
 - Low port capacities indicate that networks peer remotely at an IXP
 - 2. Ping RTT Measurements
 - RTT values provide evidence for how far (from the IXP) a peer is located
 - 3. Colocation Facilities
 - An AS can be a local peer of an IXP if they are colocated in the same facility (no reseller involved)
 - 4. Multi-IXP Routers
 - An AS may connect to multiple IXPs through the same border router
 - 5. Private Connectivity over Facilities
 - Private interconnections can be established within the same IXP-hosting facility

Algorithm Overview – 4 Modules

Does it work?

Inference Module	Coverage	Precision	Accuracy
1) Port Capacity	11%	96%	
2) RTT (<i>min</i>) + Colocation Info	76%	99.6%	94%
3) Multi-IXP	53%	97.5%	93%
4) Private Links	49%	95%	85%
Combined	93%	95%	94.5%

Remote Peering in the Wild

Contribution per Inference Module

For the *top-30* IXPs (7-9 April, 2018):

- ✓ 10% of the inferences can be made using only port capacity information
- ✓ RTT+Colo and MultilXP modules account for the majority of the inferences
- ✓ 25% of the multi-IXP routers connect to more than 10 IXPs

Inference Results

We also found:

- 1 / 3 of members peers remotely with the IXP
- ✓ 90% of IXPs have at least 10% of their peers as remote
- Large IXPs (*e.g.* AMS-IX, DE-CIX, France-IX) have ~40% of their peers as remote

Growth Rate

- Daily RTT measurements from VPs in 5 IXPs between 2017/07 – 2018/10
 LINX, LONAP, HKIX, THINX, UAIX
- 2. Also confirmed from annual reports of AMS-IX, DE-CIX, France-IX
- Remote peers grow *twice* as much compared with local peers
- Remote peers exhibit higher join (x2) and departure (x1.25) rates
- 18 remote peers switched to local

Other Features of IXP members

Aggregate traffic levels

Customer cone size

RP Routing Implications

- Interested in circuitous paths between ASes with >1 common IXP
- Traceroutes from remote peers (381 members) to any other IXP member (781 in total) in DE-CIX Frankfurt
- 66% of the cases include the closest IXP to the remote peer
- 34% of the cases do not comply with an expected hot potato exit strategy

DEMO: http://remote-ixp-peering.net

IXP's Facilities

Portal

- Remote/Local peering visualization
- Filtering remote/local peers in the IXP and Facility level
- RESTAPI
 - Publicly available soon

DEMO: http://remote-ixp-peering.net

Digital Realty London

Portal

- Remote/Local peering visualization
- Filtering remote/local peers in the IXP and Facility level
- **REST API**
- Publicly available soon

AS47622 is remote. Minimum RTT: 4 ms. Possible remote PoPs: Equinix Manchester Williams/Kilburn (MA1) - GB

Conclusions

New methodology to accurately infer peers connected to IXPs through remote peering

- Increase transparency of peering ecosystem
- Illuminate peering trends and practices

Remote Peering becomes popular practice and is almost ubiquitous

- Saturation of local markets pushes IXPs to expand to new markets
- A publicly accessible web portal with:
 - Monthly snapshots with remote and local peering inferences
 - Visualization of geographical footprints of IXPs and their members

Reference – Accepted Paper in IMC Conference, Boston, 2018 http://www.inspire.edu.gr/wp-content/pdfs/uncovering_remote_peering_interconnections_v1.pdf

Future Work

Longitudinal Study

- An extensive analysis including more IXPs back in time
- Investigate if remote peering is an actual trend
- It can benefit IXPs to overcome local saturation

Traffic Analysis

Interpretation of traffic levels of remote and local IXP peering interconnections

Thank You

