
Isolario
Project

BGP Scanner
Isolario BGP-MRT Data Reader: C library & tool

Lorenzo Cogotti
lorenzo.cogotti <at> alphacogs.com

Luca Sani
luca.sani <at> isolario.it

What is a BGP route collector?

Route collectors (RCs) are
devices which collects BGP

routing data from
co-operating ASes

Multi-Threaded Routing Toolkit format (RFC 6396)

Maintains a routing table (RIB) with the best routes received

Dumps the content of the RIB and received UPDATEs periodically
2/18

Route collecting projects

University of Oregon Route Views Project
Route Views was conceived as a tool for Internet operators to obtain real-time information
about the global routing system from the perspectives of several different backbones and
locations around the Internet. It collects BGP packets in MRT format since 2001
http://www.routeviews.org

RIPE NCC Routing Information Service (RIS)
The RIPE NCC collects and stores Internet routing data from several locations around the
globe, using RIS. It collects BGP packets in MRT format since 1999
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris

Packet Clearing House (PCH)
PCH is the international organization responsible for providing operational support and
security to critical Internet infrastructure, including Internet exchange points and the core
of the domain name system. It operates route collectors at more than 100 IXPs around
the world and its data is made available in MRT format since 2011
https://www.pch.net/resources/Raw Routing Data

Isolario
Project

Isolario
Isolario is a route collecting project which provides inter-domain real-time monitoring
services to its participants. It collects BGP packets in MRT format since 2013, and
supports ADDPATH (RFC 7911) since 2018
https://www.isolario.it

3/18

http://www.routeviews.org
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
https://www.pch.net/resources/Raw_Routing_Data
https://www.isolario.it

MRT data is getting bigger and bigger...

What is the problem?

Tools available are either slow, outdated or miss ADD-PATH handling

Usually no way to filter packets

4/18

Tools available to parse MRT data

Several languages: C, C++, Python, Perl, Java, OCaml

Tool Lang RIB updates IPv6 ADD
PATH

Last
updated

bgpdump C 2018-03-02

bgpdump2 C x x 2016-08-10

bgpparser C++ x 2015-04-11

bgpreader C x 2018-07-13
gobgp (MRT) Go - - - - 2015-02-21

mabo OCaml x 2017-06-26

mrtparse Python x 2018-06-27

PyBGPdump Python x x 2007-01-15

Java-MRT Java x 2013-02-09

zebra-dump-parser Perl x 2016-11-07

5/18

Solution: goto c

The fact is, that is exactly the kinds of things that C excels at.
Not just as a language, but as a required mentality. One of the
great strengths of C is that it doesn’t make you think of your
program as anything high-level.

Linus

C language benefits

May be easily wrapped (C++, Python, LUA)

Close to “metal”

Not only ANSI C: C99

Allows dynamic allocation on stack (→ zero-copy)

Improves code readability

6/18

Solution: goto c

The fact is, that is exactly the kinds of things that C excels at.
Not just as a language, but as a required mentality. One of the
great strengths of C is that it doesn’t make you think of your
program as anything high-level.

Linus

C language benefits

May be easily wrapped (C++, Python, LUA)

Close to “metal”

Not only ANSI C: C99

Allows dynamic allocation on stack (→ zero-copy)

Improves code readability

6/18

Solution: goto c

The fact is, that is exactly the kinds of things that C excels at.
Not just as a language, but as a required mentality. One of the
great strengths of C is that it doesn’t make you think of your
program as anything high-level.

Linus

C language benefits

May be easily wrapped (C++, Python, LUA)

Close to “metal”

Not only ANSI C: C11

Allows optimization for multithreading

Thread local/atomic variables

6/18

BGP Scanner: Isolario MRT-BGP data reader

Don’t worry!

You do not have to use C

MRT-BGP library

A highly optimized low-level reusable library

Optimized to achieve high throughput

Multi-thread friendly

Memory friendly

The real star of the show: BGP Scanner tool

Comes with all the benefits of the low-level C library

Good old grep friendly output

Can be piped to other tools

Supports gz, bz2, xz and raw

Powerful filtering features

7/18

Wait... what?

Filtering

Peer IP, Peer AS

Subnets, supernets, related, exacts

Peer Index

AS path regexp and loop detection

Can be configured with template files and/or directly by command line

Example

bgpscanner -s 192.65.0.0/16 -p "174 137" rib.20180701.1400.bz2

=|192.65.131.0/24|7018 174 137 137 137 2598|12.0.1.63|i|||7018:5000 7018:37232|12.0.1.63 7018|1530186440|1

=|192.65.131.0/24|6539 577 174 137 137 137 2598|216.18.31.102|i||||216.18.31.102 6539|1529912797|1

=|192.65.131.0/24|701 174 137 137 137 2598|137.39.3.55|i||||137.39.3.55 701|1529397335|1

=|192.65.131.0/24|3741 174 137 137 137 2598|168.209.255.56|i||||168.209.255.56 3741|1529593095|1

=|192.65.131.0/24|11686 174 137 137 137 2598|96.4.0.55|i||||96.4.0.55 11686|1530338943|1

· · ·

Subnets of 192.65.0.0/16 crossing 174 137 link

8/18

It can do a lot more...

Available options:

-a <feeder AS>

Print only entries coming from the given feeder AS

-A <file>

Print only entries coming from the feeder ASes contained in file

-d

Dump packet filter bytecode to stderr (debug option)

-e <subnet>

Print only entries containing the exact given subnet of interest

-E <file>

Print only entries containing the exact subnets of interest contained in file

-f

Print only every feeder IP in the RIB provided

-i <feeder IP>

Print only entries coming from a given feeder IP

-I <file>

Print only entries coming from the feeder IP contained in file

-l

Print only entries with a loop in its AS PATH

-L

Print only entries without a loop in its AS PATH

-o <file>

Define the output file to store information (defaults to stdout)

-p <path expression>

Print only entries which AS PATH matches the expression

-P <path expression>

Print only entries which AS PATH does not match the expression

-r <subnet>

Print only entries containing subnets related to the given subnet of interest

-R <file>

Print only entries containing subnets related to the subnets of interest contained in file

-s <subnet>

Print only entries containing subnets included to the given subnet of interest

-S <file>

Print only entries containing subnets included to the subnets of interest contained in file

-u <subnet>

Print only entries containing subnets including (or equal) to the given subnet of interest

-U <file>

Print only entries containing subnets including (or equal) to the subnets of interest contained in file

9/18

Benchmarks: BGP data evolution scenario

Test machine

Intel(R) Core(TM) i7-4790K 4.00GHz

RAM 16GB

Samsung SSD 850 EVO 500GB

Debian Stretch

Data sources

Route Views route-views6

RIS rrc00

Isolario Korriban

Benchmark phases (∀ collectors)

1 Download first RIB of July, 2018

2 Download all updates of July, 2018

3 Decompress

4 Run 10 times each MRT tool

5 Compute average results of runs for each metric

Data is decompressed to eliminate decompression algorithm overhead

10/18

Route Views route-views6 collector

RIB size
∑

UPDATE size µ UPDATE size # files
99MB 25.65GB 8.82MB 2977

bgpscanner

bgpreader

bgpdump

mabo

bgpparser

java-mrt

zebra-dump
parser

mrtparse

 100 1000 10000 100000

Time elapsed

Time [s]

bgpscanner

bgpdump

zebra-dump
parser

mabo

bgpparser

mrtparse

bgpreader

java-mrt

 1 10 100 1000

Peak

Avg

Memory consumption

RAM [MB]

Only IPv6 feeders
(26 sessions, 24 full tables)

11/18

RIS rrc00 collector

RIB size
∑

UPDATE size µ UPDATE size # files
1.1GB 33.6GB 3.85MB 8930

bgpscanner

bgpreader

bgpdump

mabo

bgpparser

 100 1000 10000

Time elapsed

Time [s]

bgpscanner

bgpdump

mabo

bgpparser

bgpreader

 1 10 100

Peak

Avg

Memory consumption

RAM [MB]

IPv4 + IPv6 feeders (39 sessions)

22 IPv4 sessions (21 full tables)

17 IPv6 sessions (14 full tables)

12/18

Isolario Korriban collector

RIB size
∑

UPDATE size µ UPDATE size # files
5.7GB 810.64GB 92.97MB 8930

bgpscanner

bgpdump

 1000 10000 100000

Time elapsed

Time [s]

bgpscanner

bgpdump

 1 10

Peak

Avg

Memory consumption

RAM [MB]

IPv4 + IPv6 feeders with ADDPATH

512 IPv4 sessions (112 full tables)

407 IPv6 sessions (126 full tables)

Thanks to NLNOG RING for providing 68 IPv4 and 69 IPv6 full tables!
13/18

Filtering benchmark

Data source

Last RIB of July 2018 of Korriban collector

475MB (7.8GB uncompressed)

None

Feeder AS

First AS

End AS

Cross link

Loop

 10 20 30 40 50 60 70 80

Filtering time

seconds 14/18

How to install BGP Scanner?

BGP Scanner is open-source

BSD license

Available on www.isolario.it → Tools

Source code on https://gitlab.com/Isolario

Install procedure (Source Tarball)

1 Download bgpscanner-[version].tar.gz

2 ./configure && make && make install

Install procedure (Debian package archives)

1 Download libisocore1 [version].deb

2 Download bgpscanner [version].deb

3 dpkg -i *.deb

15/18

www.isolario.it
https://gitlab.com/Isolario

Thank you for your attention

Any question?

info <at> isolario.it
lorenzo.cogotti <at> alphacogs.com

https://www.isolario.it
http://www.alphacogs.com/site

16/18

https://www.isolario.it
http://www.alphacogs.com/site

Links and benchmark configuration

Tool Version Language RIB
bgpdump 1.5.0 C https://bitbucket.org/ripencc/bgpdump/overview

bgpdump2 2.0.1 C https://github.com/yasuhiro-ohara-ntt/bgpdump2

bgpparser ? C++ https://github.com/cawka/bgpparser

bgpreader 1.2.1 C https://github.com/caida/bgpstream

gobgp (MRT) ? Go https://git.2f30.org/go-bgp/

mabo ? OCaml https://github.com/ANSSI-FR/mabo

mrtparse 1.6 Python https://github.com/t2mune/mrtparse

PyBGPdump ? Python https://jon.oberheide.org/pybgpdump/

Java-MRT ? Java https://github.com/paaguti/java-mrt

zebra-dump-parser ? Perl https://github.com/rfc1036/zebra-dump-parser

Tool Command
bgpscanner bgpscanner FILE > /dev/null 2>&1

bgpdump bgpdump -m FILE > /dev/null 2>&1

bgpdump2 bgpdump2 -m FILE > /dev/null 2>&1

bgpparser bgpparser -B FILE > /dev/null 2>&1

bgpreader bgpreader -d singlefile -o rib-file/upd-file,FILE > /dev/null 2>&1

mabo mabo dump FILE > /dev/null 2>&1

mrtparse mrt2bgpdump.py FILE > /dev/null 2>&1

Java-MRT mrt.jar org.javamrt.progs.route btoa FILE > /dev/null 2>&1

zebra-dump-parser zebra-dump-parser.pl FILE > /dev/null 2>&1

17/18

https://bitbucket.org/ripencc/bgpdump/overview
https://github.com/yasuhiro-ohara-ntt/bgpdump2
https://github.com/cawka/bgpparser
https://github.com/caida/bgpstream
https://git.2f30.org/go-bgp/
https://github.com/ANSSI-FR/mabo
https://github.com/t2mune/mrtparse
https://jon.oberheide.org/pybgpdump/
https://github.com/paaguti/java-mrt
https://github.com/rfc1036/zebra-dump-parser

Filtering benchmark

Filters

BGP data announced by feeder AS199036

bgpscanner -a "199036"

First AS of AS PATH is AS199036

bgpscanner -p "^199036"

Last AS of AS PATH AS3333

bgpscanner -p "3333$"

AS PATH crosses link AS174 AS3356

bgpscanner -p "174 3356"

Subnets of 193.0.0.0/16 or 2001:67c::/32 destined to AS3333

bgpscanner -s "193.0.0.0/16" -s "2001:67c::/32" -p "3333$"

AS PATH contains a loop

bgpscanner -l

18/18

	Appendice

